Optical clearing of human skin in vivo using aqueous solutions of sorbitol, xylitol, xylose, and DMSO
Berezin K. V. 1, Stepanovich E. Yu. 2, Likhter A. M. 2, Dvoretsky K. N. 3, Grabarchuk E. V. 2, Genina E. A. 1,4, Yanina I. Yu. 1,4, Pravdin A. B. 1, Surkov Yu. I. 1, Tuchin V. V. 1,4,5
1Saratov State University, Saratov, Russia
2Astrakhan State University, Astrakhan, Russia
3Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia
4Tomsk State University, Tomsk, Russia
5Institute for Precision Mechanics and Control Problems of the Russian Academy of Sciences (IPTMU RAS), Saratov, Russia
Email: berezinkv@yandex.ru, likhter@bk.ru, dcn@yandex.ru, kof_712@mail.ru, eagenina@yandex.ru, irina-yanina@yandex.ru, pravdinab@mail.ru, surkov9898@gmail.com, tuchinvv@mail.ru

PDF
Using the method of optical coherence tomography (OCT), results of immersion optical clearing of human skin in vivo were obtained using aqueous solutions of sorbitol, xylitol, D-xylose, and dimethyl sulfoxide (DMSO) as immersion agents. To assess the effectiveness of optical clearing, the rate of change in the scattering coefficient was determined using the averaged A-scan of the OCT signal in the dermis region at a depth of 350 to 700 μm. As a result of molecular modeling using classical molecular dynamics methods (GROMACS), the number of hydrogen bonds formed per unit time for each agent was determined, as well as the influence of these agents on the spatial volume of the collagen peptide ((GPH)_3)9. Quantum chemistry methods HF/STO3G/DFT/B3LYP/6-311G(d) were used to calculate the intermolecular interaction energy of immersion agent complexes with a fragment of the collagen peptide ((GPH)_3)2, and correlations were established between the effectiveness of optical clearing and the intermolecular interaction energy. Non-classical hydrogen bonds formed during the interaction of DMSO with the collagen peptide and water molecules are discussed in detail. The effective diffusion coefficient of DMSO in rat skin ex vivo was calculated, with an average value of (4.1±3.1)x10-6 cm2/sec. Keywords: molecular modeling, optical clearing of human skin, hydrogen bonds, molecular dynamics, quantum chemistry, immersion agents, diffusion coefficient.
  1. V.V. Tuchin. Tissue optics: light scattering methods and instruments for medical diagnostics, 3rd ed. (PM 254, SPIE Press, Bellingham, WA, 2015). DOI: 10.1117/3.1003040
  2. H. Jonasson, I. Fredriksson, S. Bergstrand, C.J. Ostgren, M. Larsson, T. Stromberg. J. Biomed. Opt., 23 (12), 121608 (2018). DOI: 10.1117/1.JBO.23.12.121608
  3. Handbook of tissue optical clearing: new prospects in optical imaging, ed. by V.V. Tuchin, D. Zhu, E.A. Genina (Taylor \& Francis Group LLC, CRC Press, Boca Raton, FL, 2022). DOI: 10.1201/9781003025252
  4. J.M. Hirshburg. Chemical agent induced reduction of skin light scattering: doctoral dissertation (Texas A \& M University, 2009)
  5. D. Zhu, K.V. Larin, Q. Luo, V.V. Tuchin. Laser Photonics Rev., 7 (5), 732 (2013). DOI: 10.1002/lpor.201200056
  6. A.N. Bashkatov, K.V. Berezin, K.N. Dvoretskiy, M.L. Chernavina, E.A. Genina, V.D. Genin, V.I. Kochubey, E.N. Lazareva, A.B. Pravdin, M.E. Shvachkina, P.A. Timoshina, D.K. Tuchina, D.D. Yakovlev, D.A. Yakovlev, I.Yu. Yanina, O.S. Zhernovaya, V.V. Tuchin. J. Biomed. Opt., 23 (9), 091416 (2018). DOI: 10.1117/1.JBO.23.9.091416
  7. L. Oliveira, V.V. Tuchin. The optical clearing method: a new tool for clinical practice and biomedical engineering (Springer Nature Switzerland AG, Basel, 2019). DOI: 10.1007/978-3-030-33055-2
  8. I. Costantini, R. Cicchi, L. Silvestri, F. Vanzi, F.S. Pavone. Biomedical Optics Express, 10 (10), 5251 (2019). DOI: 10.1364/boe.10.005251
  9. P. Matryba, L. Kaczmarek, J. Goab. Laser Photonics Rev., 13 (8), 1800292 (2019). DOI: 10.1002/lpor.201800292
  10. T. Yu, J. Zhu, D. Li, D. Zhu. iScience, 24 (3), 102178 (2021). DOI: 10.1016/j.isci.2021.102178
  11. I.S. Martins, H.F. Silva, E.N. Lazareva, N.V. Chernomyrdin, K.I. Zaytsev, L.M. Oliveira, V.V. Tuchin. Biomedical Optics Express, 14 (1), 249 (2023). DOI: 10.1364/BOE.479320
  12. E.C. Cheshire, R.D.G. Malcomson, S. Joseph, A. Adnan, D. Adlam, G.N. Rutty. Int. J. Legal Med., 131, 1377 (2017). DOI: 10.1007/s00414-017-1570-1
  13. T. Yu, J. Zhu, Y. Li, Y. Ma, J. Wang, X. Cheng, S. Jin, Q. Sun, X. Li, H. Gong, Q. Luo, F. Xu, S. Zhao, D. Zhu. Sci. Rep., 8 (1), 1964 (2018). DOI: 10.1038/s41598-018-20306-3
  14. J. Musakhanian, D.W. Osborne, J-D. Rodier. AAPS PharmSciTech, 25 (7), 201 (2024). DOI: 10.1208/s12249-024-02886-8
  15. E.A. Genina, A.N. Bashkatov, E.A. Kolesnikova, M.V. Basko, G.S. Terentyuk, V.V. Tuchin. J. Biomed. Optics, 19 (2), 021109 (2013). DOI: 10.1117/1.JBO.19.2.021109
  16. B. Kumar, S.K. Jain, S.K. Prajapati. Intern. J. Drug Delivery, 3 (1), 93 (2011). DOI: 10.5138/ijdd.2010.0975.0215.03057
  17. S.M. Zaytsev, Yu.I. Svenskaya, E.V. Lengert, G.S. Terentyuk, A.N. Bashkatov, V.V. Tuchin, E.A. Genina. J. Biophotonics, 13 (4), e201960020 (2020). DOI: 10.1002/jbio.201960020
  18. S. Karma, J. Homan, C. Stoianovici, B. Choi. J. Innovative Optical Health Sciences, ( 3) 3, 153 (2010). DOI: 10.1142/S1793545810001015
  19. A.K. Bui, R.A. McClure, J. Chang, C. Stoianovici, J. Hirshburg, A.T. Yeh, B. Choi. Lasers in Surgery and Medicine, 41 (2), 142 (2009). DOI: 10.1002/lsm.20742
  20. X. Wen, S.L. Jacques, V.V. Tuchin, D. Zhu. J. Biomed. Opt., 17 (6), 066022 (2012). DOI: 10.1117/1.JBO.17.6.066022
  21. A.N. Bashkatov, E.A. Genina, V.V. Tuchin. Handbook of optical sensing of glucose in biological fluids and tissues, ed. by V.V. Tuchin (Taylor \& Francis Group LLC, CRC Press, 2009), ch. 21. DOI: 10.1201/9781584889755
  22. K.V. Larin, V.V. Tuchin. Quantum Electronics, 38 (6), 551 (2008). DOI: 10.1070/QE2008v038n06ABEH013850
  23. D.K. Tuchina, R. Shi, A.N. Bashkatov, E.A. Genina, D. Zhu, Q. Luo, V.V. Tuchin. J. Biophotonics, 8 (4), 332 (2015). DOI: 10.1002/jbio.201400138
  24. V. Hovhannisyan, P.-S. Hu, S.-J. Chen, C.-S. Kim, C.-Y. Dong. J. Biomed. Opt., 18 (4), 046004 (2013). DOI: 10.1117/1.JBO.18.4.046004
  25. A.Yu. Sdobnov, M.E. Darvin, E.A. Genina, A.N. Bashkatov, J. Lademann, V.V. Tuchin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 197, 216 (2018). DOI: 10.1016/j.saa.2018.01.085
  26. A.T. Yeh, B. Choi, J.S. Nelson, B.J. Tromberg. J. Investigative Dermatology, 121 (6), 1332 (2003). DOI: 10.1046/j.1523-1747.2003.12634.x
  27. Z. Ou, Yi-Sh. Duh, N.J. Rommelfanger, C.H.C. Keck, Sh. Jiang, K. Brinson Jr., S. Zhao, E.L. Schmidt, X. Wu, F. Yang, B. Cai, H. Cui, W. Qi, Sh. Wu, A. Tantry, R. Roth, J. Ding, X. Chen, J.A Kaltschmidt, M.L. Brongersma, G. Hong. Science, 385 (6713), eadm6869 (2024). DOI: 10.1126/science.adm686
  28. V.V. Tuchin, D.M. Zhestkov, A.N. Bashkatov, E.A. Genina. Optics Express, 12 (13), 2966 (2004). DOI: 10.1364/OPEX.12.002966
  29. V.V. Tuchin. Optical clearing of tissues and blood (PM 154, SPIE Press, Bellingham, WA, 2005). DOI: 10.1117/3.637760
  30. O. Sydoruk, O. Zhernovaya, V. Tuchin, A. Douplik. J. Biomed. Opt., 17 (11), 115002-1-6 (2012). DOI: 10.1117/1.JBO.17.11.115002
  31. O. Zhernovaya, V.V. Tuchin, M.J. Leahy. J. Biomed. Opt., 18 (2), 026014-1-8 (2013). DOI: 10.1117/1.JBO.18.2.026014
  32. O.S. Zhernovaya, E.A. Genina, V.V. Tuchin, A.N. Bashkatov. Handbook of tissue optical clearing: new prospects in optical imaging, ed. by V.V. Tuchin, D. Zhu, E.A. Genina (Taylor \& Francis Group LLC, CRC Press, Boca Raton, FL, 2022), p. 383-392. DOI: 10.1201/9781003025252
  33. T. Yu, X. Wen, V.V. Tuchin, Q. Luo, D. Zhu. J. Biomed. Opt., 16 (9), 095002 (2011). DOI: 10.1117/1.3621515
  34. X. Wen, Z. Mao, Z. Han, V.V. Tuchin, D. Zhu. J. Biophotonics, 3 (1-2), 44 (2010). DOI: 10.1002/jbio.200910080
  35. A.Yu. Sdobnov, M.E. Darvin, J. Schleusener, J. Lademann, V.V. Tuchin. J. Biophotonics, 12 (5), e201800283 (2019). DOI: 10.1002/jbio.201800283
  36. K.V. Berezin, E.V. Grabarchuk, A.M. Lichter, K.N. Dvoretski, V.V. Tuchin. J. Biophotonics, 17 (2), e202300354 (2024). DOI: 10.1002/jbio.202300354
  37. K.V. Berezin, E.V. Grabarchuk, A.M. Lichter, K.N. Dvoretski, Yu.I. Surkov, V.V. Tuchin. Technical Physics, 69 (3), 485 (2024). DOI: 10.21883/0000000000
  38. C.C.J. Roothaan. Rev. Modern Phys., 23 (2), 69 (1951). DOI: 10.1103/RevModPhys.23.69
  39. R. Goldberg, B. Lang, B. Coxon, S. Decker. J. Chem. Thermodynamics, 15 (2), 2 (2012). DOI: 10.1016/j.jct.2011.07.004
  40. D.J. Faber, F.J. van der Meer, M.C.G. Aalders, T.G. van Leeuwen. Opt. Express, 12 (19), 4353 (2004). DOI: 10.1364/OPEX.12.004353
  41. P. Lee, W. Gao, X. Zhang. Appl. Opt., 49 (18), 3538 (2010). DOI: 10.1364/AO.49.003538
  42. E.A. Genina, A.N. Bashkatov, E.A. Kolesnikova, M.V. Basko, G.S. Terentyuk, V.V. Tuchin. J. Biomed. Opt., 19 (2), 021109 (2014). DOI: 10.1117/1.JBO.19.2.021109
  43. R.K. Wang, V.V. Tuchin. Handbook of coherent-domain optical methods, biomedical diagnostics, environmental monitoring, and material science, 2nd ed., ed. by V.V. Tuchin (Springer-Verlag, Berlin, Heidelberg, N.Y., 2013), vol. 2, p. 665. DOI: 10.1007/978-1-4614-5176-1
  44. E.A. Genina, N.S. Ksenofontova, A.N. Bashkatov, G.S. Terentyuk, V.V. Tuchin. Quantum Electronics, 47 (6), 561 (2017). DOI: 10.1070/QEL16378
  45. K. Okuyama, K. Miyama, K. Mizuno, H.P. Bachinger. Biopolymers, 97 (8), 607 (2012). DOI: 10.1002/bip.22048
  46. W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M.Jr. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman. J. Am. Chem. Soc., 117 (19), 5179 (1995). DOI: 10.1021/ja00124a002
  47. A.D. Becke. J. Chem. Phys., 98 (7), 5648 (1993). DOI: 10.1063/1.464913
  48. C. Lee, W. Yang, R.G. Parr. Phys. Rev. B, 37 (2), 785 (1988). DOI: 10.1103/PhysRevB.37.785
  49. M.J. Frisch, G.W. Trucks, H.B. Schlegel et al. Gaussian09, revision A.02 (Gaussian Inc, Pittsburgh PA, 2009)
  50. D. Van der Spoel, E. Lindahl, B. Hess, G. Groenhof, E.A. Mark, H.J.C. Berendsen. J. Comput. Chem., 26 (16), 1701 (2005). DOI: 10.1002/jcc.20291
  51. Y. Duan, C. Wu, S. Chowdhury, M.C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, P. Kollman. J. Comp. Chem., 24 (16), 1999 (2003). DOI: 10.1002/jcc.10349
  52. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak. J. Chem. Phys., 81 (8), 3884 (1984). DOI: 10.1063/1.448118
  53. W. Humphrey, A. Dalke, K. Schulten. J. Mol. Graph., 14 (1), 33 (1996). DOI: 10.1016/0263-7855(96)00018-5
  54. H.D. Loof, L. Nilsson, R. Rigler. J. Am. Chem. Soc., 114 (11), 4028 (1992). DOI: 0.1021/ja00037a002
  55. K.V. Berezin, K.N. Dvoretski, M.L. Chernavina, A.M. Likhter, V.V. Smirnov, I.T. Shagautdinova, E.M. Antonova, E.Yu. Stepanovich, E.A. Dzhalmuhambetova, V.V. Tuchin. J. Mol. Modeling., 24 (2), 45 (2018). DOI: 10.1007/s00894-018-3584-0
  56. Y. Duan, C. Wu, S. Chowdhury, M.C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, P. Kollman. J. Comp. Chem., 24 (16), 1999 (2003). DOI: 10.1002/jcc.10349
  57. A. Jumabaev, H. Hushvaktov, B. Khudaykulov, A. Absanov, M. Onuk, I. Doroshenko, L. Bulavin. Ukr. J. Phys., 68 (6), 375 (2023). DOI: 10.15407/ujpe68.6.375
  58. J.-D. Chai, M. Head-Gordon. J. Chem. Phys., 128 (8), 084106 (2008). DOI: 10.1063/1.2834918
  59. S. Simon, M. Duran, J.J. Dannenberg. J. Chem. Phys., 105 (24), 11024-11031 (1996). DOI: 10.1063/1.472902
  60. V.D. Genin, D.K. Tuchina, A.J. Sadeq, E.A. Genina, V.V. Tuchin, A.N. Bashkatov. J. Biomed. Photonics \& Engineering, 2 (1), 010303 (2016). DOI: 10.18287/JBPE16.02.010303

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru