Optical clearing of human skin in vivo using aqueous solutions of sorbitol, xylitol, xylose, and DMSO
Berezin K. V.
1, Stepanovich E. Yu.
2, Likhter A. M.
2, Dvoretsky K. N.
3, Grabarchuk E. V.
2, Genina E. A.
1,4, Yanina I. Yu.
1,4, Pravdin A. B.
1, Surkov Yu. I.
1, Tuchin V. V.
1,4,51Saratov State University, Saratov, Russia
2Astrakhan State University, Astrakhan, Russia
3Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia
4Tomsk State University, Tomsk, Russia
5Institute for Precision Mechanics and Control Problems of the Russian Academy of Sciences (IPTMU RAS), Saratov, Russia
Email: berezinkv@yandex.ru, likhter@bk.ru, dcn@yandex.ru, kof_712@mail.ru, eagenina@yandex.ru, irina-yanina@yandex.ru, pravdinab@mail.ru, surkov9898@gmail.com, tuchinvv@mail.ru
Using the method of optical coherence tomography (OCT), results of immersion optical clearing of human skin in vivo were obtained using aqueous solutions of sorbitol, xylitol, D-xylose, and dimethyl sulfoxide (DMSO) as immersion agents. To assess the effectiveness of optical clearing, the rate of change in the scattering coefficient was determined using the averaged A-scan of the OCT signal in the dermis region at a depth of 350 to 700 μm. As a result of molecular modeling using classical molecular dynamics methods (GROMACS), the number of hydrogen bonds formed per unit time for each agent was determined, as well as the influence of these agents on the spatial volume of the collagen peptide ((GPH)_3)9. Quantum chemistry methods HF/STO3G/DFT/B3LYP/6-311G(d) were used to calculate the intermolecular interaction energy of immersion agent complexes with a fragment of the collagen peptide ((GPH)_3)2, and correlations were established between the effectiveness of optical clearing and the intermolecular interaction energy. Non-classical hydrogen bonds formed during the interaction of DMSO with the collagen peptide and water molecules are discussed in detail. The effective diffusion coefficient of DMSO in rat skin ex vivo was calculated, with an average value of (4.1±3.1)x10-6 cm2/sec. Keywords: molecular modeling, optical clearing of human skin, hydrogen bonds, molecular dynamics, quantum chemistry, immersion agents, diffusion coefficient.
- V.V. Tuchin. Tissue optics: light scattering methods and instruments for medical diagnostics, 3rd ed. (PM 254, SPIE Press, Bellingham, WA, 2015). DOI: 10.1117/3.1003040
- H. Jonasson, I. Fredriksson, S. Bergstrand, C.J. Ostgren, M. Larsson, T. Stromberg. J. Biomed. Opt., 23 (12), 121608 (2018). DOI: 10.1117/1.JBO.23.12.121608
- Handbook of tissue optical clearing: new prospects in optical imaging, ed. by V.V. Tuchin, D. Zhu, E.A. Genina (Taylor \& Francis Group LLC, CRC Press, Boca Raton, FL, 2022). DOI: 10.1201/9781003025252
- J.M. Hirshburg. Chemical agent induced reduction of skin light scattering: doctoral dissertation (Texas A \& M University, 2009)
- D. Zhu, K.V. Larin, Q. Luo, V.V. Tuchin. Laser Photonics Rev., 7 (5), 732 (2013). DOI: 10.1002/lpor.201200056
- A.N. Bashkatov, K.V. Berezin, K.N. Dvoretskiy, M.L. Chernavina, E.A. Genina, V.D. Genin, V.I. Kochubey, E.N. Lazareva, A.B. Pravdin, M.E. Shvachkina, P.A. Timoshina, D.K. Tuchina, D.D. Yakovlev, D.A. Yakovlev, I.Yu. Yanina, O.S. Zhernovaya, V.V. Tuchin. J. Biomed. Opt., 23 (9), 091416 (2018). DOI: 10.1117/1.JBO.23.9.091416
- L. Oliveira, V.V. Tuchin. The optical clearing method: a new tool for clinical practice and biomedical engineering (Springer Nature Switzerland AG, Basel, 2019). DOI: 10.1007/978-3-030-33055-2
- I. Costantini, R. Cicchi, L. Silvestri, F. Vanzi, F.S. Pavone. Biomedical Optics Express, 10 (10), 5251 (2019). DOI: 10.1364/boe.10.005251
- P. Matryba, L. Kaczmarek, J. Goab. Laser Photonics Rev., 13 (8), 1800292 (2019). DOI: 10.1002/lpor.201800292
- T. Yu, J. Zhu, D. Li, D. Zhu. iScience, 24 (3), 102178 (2021). DOI: 10.1016/j.isci.2021.102178
- I.S. Martins, H.F. Silva, E.N. Lazareva, N.V. Chernomyrdin, K.I. Zaytsev, L.M. Oliveira, V.V. Tuchin. Biomedical Optics Express, 14 (1), 249 (2023). DOI: 10.1364/BOE.479320
- E.C. Cheshire, R.D.G. Malcomson, S. Joseph, A. Adnan, D. Adlam, G.N. Rutty. Int. J. Legal Med., 131, 1377 (2017). DOI: 10.1007/s00414-017-1570-1
- T. Yu, J. Zhu, Y. Li, Y. Ma, J. Wang, X. Cheng, S. Jin, Q. Sun, X. Li, H. Gong, Q. Luo, F. Xu, S. Zhao, D. Zhu. Sci. Rep., 8 (1), 1964 (2018). DOI: 10.1038/s41598-018-20306-3
- J. Musakhanian, D.W. Osborne, J-D. Rodier. AAPS PharmSciTech, 25 (7), 201 (2024). DOI: 10.1208/s12249-024-02886-8
- E.A. Genina, A.N. Bashkatov, E.A. Kolesnikova, M.V. Basko, G.S. Terentyuk, V.V. Tuchin. J. Biomed. Optics, 19 (2), 021109 (2013). DOI: 10.1117/1.JBO.19.2.021109
- B. Kumar, S.K. Jain, S.K. Prajapati. Intern. J. Drug Delivery, 3 (1), 93 (2011). DOI: 10.5138/ijdd.2010.0975.0215.03057
- S.M. Zaytsev, Yu.I. Svenskaya, E.V. Lengert, G.S. Terentyuk, A.N. Bashkatov, V.V. Tuchin, E.A. Genina. J. Biophotonics, 13 (4), e201960020 (2020). DOI: 10.1002/jbio.201960020
- S. Karma, J. Homan, C. Stoianovici, B. Choi. J. Innovative Optical Health Sciences, ( 3) 3, 153 (2010). DOI: 10.1142/S1793545810001015
- A.K. Bui, R.A. McClure, J. Chang, C. Stoianovici, J. Hirshburg, A.T. Yeh, B. Choi. Lasers in Surgery and Medicine, 41 (2), 142 (2009). DOI: 10.1002/lsm.20742
- X. Wen, S.L. Jacques, V.V. Tuchin, D. Zhu. J. Biomed. Opt., 17 (6), 066022 (2012). DOI: 10.1117/1.JBO.17.6.066022
- A.N. Bashkatov, E.A. Genina, V.V. Tuchin. Handbook of optical sensing of glucose in biological fluids and tissues, ed. by V.V. Tuchin (Taylor \& Francis Group LLC, CRC Press, 2009), ch. 21. DOI: 10.1201/9781584889755
- K.V. Larin, V.V. Tuchin. Quantum Electronics, 38 (6), 551 (2008). DOI: 10.1070/QE2008v038n06ABEH013850
- D.K. Tuchina, R. Shi, A.N. Bashkatov, E.A. Genina, D. Zhu, Q. Luo, V.V. Tuchin. J. Biophotonics, 8 (4), 332 (2015). DOI: 10.1002/jbio.201400138
- V. Hovhannisyan, P.-S. Hu, S.-J. Chen, C.-S. Kim, C.-Y. Dong. J. Biomed. Opt., 18 (4), 046004 (2013). DOI: 10.1117/1.JBO.18.4.046004
- A.Yu. Sdobnov, M.E. Darvin, E.A. Genina, A.N. Bashkatov, J. Lademann, V.V. Tuchin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 197, 216 (2018). DOI: 10.1016/j.saa.2018.01.085
- A.T. Yeh, B. Choi, J.S. Nelson, B.J. Tromberg. J. Investigative Dermatology, 121 (6), 1332 (2003). DOI: 10.1046/j.1523-1747.2003.12634.x
- Z. Ou, Yi-Sh. Duh, N.J. Rommelfanger, C.H.C. Keck, Sh. Jiang, K. Brinson Jr., S. Zhao, E.L. Schmidt, X. Wu, F. Yang, B. Cai, H. Cui, W. Qi, Sh. Wu, A. Tantry, R. Roth, J. Ding, X. Chen, J.A Kaltschmidt, M.L. Brongersma, G. Hong. Science, 385 (6713), eadm6869 (2024). DOI: 10.1126/science.adm686
- V.V. Tuchin, D.M. Zhestkov, A.N. Bashkatov, E.A. Genina. Optics Express, 12 (13), 2966 (2004). DOI: 10.1364/OPEX.12.002966
- V.V. Tuchin. Optical clearing of tissues and blood (PM 154, SPIE Press, Bellingham, WA, 2005). DOI: 10.1117/3.637760
- O. Sydoruk, O. Zhernovaya, V. Tuchin, A. Douplik. J. Biomed. Opt., 17 (11), 115002-1-6 (2012). DOI: 10.1117/1.JBO.17.11.115002
- O. Zhernovaya, V.V. Tuchin, M.J. Leahy. J. Biomed. Opt., 18 (2), 026014-1-8 (2013). DOI: 10.1117/1.JBO.18.2.026014
- O.S. Zhernovaya, E.A. Genina, V.V. Tuchin, A.N. Bashkatov. Handbook of tissue optical clearing: new prospects in optical imaging, ed. by V.V. Tuchin, D. Zhu, E.A. Genina (Taylor \& Francis Group LLC, CRC Press, Boca Raton, FL, 2022), p. 383-392. DOI: 10.1201/9781003025252
- T. Yu, X. Wen, V.V. Tuchin, Q. Luo, D. Zhu. J. Biomed. Opt., 16 (9), 095002 (2011). DOI: 10.1117/1.3621515
- X. Wen, Z. Mao, Z. Han, V.V. Tuchin, D. Zhu. J. Biophotonics, 3 (1-2), 44 (2010). DOI: 10.1002/jbio.200910080
- A.Yu. Sdobnov, M.E. Darvin, J. Schleusener, J. Lademann, V.V. Tuchin. J. Biophotonics, 12 (5), e201800283 (2019). DOI: 10.1002/jbio.201800283
- K.V. Berezin, E.V. Grabarchuk, A.M. Lichter, K.N. Dvoretski, V.V. Tuchin. J. Biophotonics, 17 (2), e202300354 (2024). DOI: 10.1002/jbio.202300354
- K.V. Berezin, E.V. Grabarchuk, A.M. Lichter, K.N. Dvoretski, Yu.I. Surkov, V.V. Tuchin. Technical Physics, 69 (3), 485 (2024). DOI: 10.21883/0000000000
- C.C.J. Roothaan. Rev. Modern Phys., 23 (2), 69 (1951). DOI: 10.1103/RevModPhys.23.69
- R. Goldberg, B. Lang, B. Coxon, S. Decker. J. Chem. Thermodynamics, 15 (2), 2 (2012). DOI: 10.1016/j.jct.2011.07.004
- D.J. Faber, F.J. van der Meer, M.C.G. Aalders, T.G. van Leeuwen. Opt. Express, 12 (19), 4353 (2004). DOI: 10.1364/OPEX.12.004353
- P. Lee, W. Gao, X. Zhang. Appl. Opt., 49 (18), 3538 (2010). DOI: 10.1364/AO.49.003538
- E.A. Genina, A.N. Bashkatov, E.A. Kolesnikova, M.V. Basko, G.S. Terentyuk, V.V. Tuchin. J. Biomed. Opt., 19 (2), 021109 (2014). DOI: 10.1117/1.JBO.19.2.021109
- R.K. Wang, V.V. Tuchin. Handbook of coherent-domain optical methods, biomedical diagnostics, environmental monitoring, and material science, 2nd ed., ed. by V.V. Tuchin (Springer-Verlag, Berlin, Heidelberg, N.Y., 2013), vol. 2, p. 665. DOI: 10.1007/978-1-4614-5176-1
- E.A. Genina, N.S. Ksenofontova, A.N. Bashkatov, G.S. Terentyuk, V.V. Tuchin. Quantum Electronics, 47 (6), 561 (2017). DOI: 10.1070/QEL16378
- K. Okuyama, K. Miyama, K. Mizuno, H.P. Bachinger. Biopolymers, 97 (8), 607 (2012). DOI: 10.1002/bip.22048
- W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M.Jr. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman. J. Am. Chem. Soc., 117 (19), 5179 (1995). DOI: 10.1021/ja00124a002
- A.D. Becke. J. Chem. Phys., 98 (7), 5648 (1993). DOI: 10.1063/1.464913
- C. Lee, W. Yang, R.G. Parr. Phys. Rev. B, 37 (2), 785 (1988). DOI: 10.1103/PhysRevB.37.785
- M.J. Frisch, G.W. Trucks, H.B. Schlegel et al. Gaussian09, revision A.02 (Gaussian Inc, Pittsburgh PA, 2009)
- D. Van der Spoel, E. Lindahl, B. Hess, G. Groenhof, E.A. Mark, H.J.C. Berendsen. J. Comput. Chem., 26 (16), 1701 (2005). DOI: 10.1002/jcc.20291
- Y. Duan, C. Wu, S. Chowdhury, M.C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, P. Kollman. J. Comp. Chem., 24 (16), 1999 (2003). DOI: 10.1002/jcc.10349
- H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak. J. Chem. Phys., 81 (8), 3884 (1984). DOI: 10.1063/1.448118
- W. Humphrey, A. Dalke, K. Schulten. J. Mol. Graph., 14 (1), 33 (1996). DOI: 10.1016/0263-7855(96)00018-5
- H.D. Loof, L. Nilsson, R. Rigler. J. Am. Chem. Soc., 114 (11), 4028 (1992). DOI: 0.1021/ja00037a002
- K.V. Berezin, K.N. Dvoretski, M.L. Chernavina, A.M. Likhter, V.V. Smirnov, I.T. Shagautdinova, E.M. Antonova, E.Yu. Stepanovich, E.A. Dzhalmuhambetova, V.V. Tuchin. J. Mol. Modeling., 24 (2), 45 (2018). DOI: 10.1007/s00894-018-3584-0
- Y. Duan, C. Wu, S. Chowdhury, M.C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, P. Kollman. J. Comp. Chem., 24 (16), 1999 (2003). DOI: 10.1002/jcc.10349
- A. Jumabaev, H. Hushvaktov, B. Khudaykulov, A. Absanov, M. Onuk, I. Doroshenko, L. Bulavin. Ukr. J. Phys., 68 (6), 375 (2023). DOI: 10.15407/ujpe68.6.375
- J.-D. Chai, M. Head-Gordon. J. Chem. Phys., 128 (8), 084106 (2008). DOI: 10.1063/1.2834918
- S. Simon, M. Duran, J.J. Dannenberg. J. Chem. Phys., 105 (24), 11024-11031 (1996). DOI: 10.1063/1.472902
- V.D. Genin, D.K. Tuchina, A.J. Sadeq, E.A. Genina, V.V. Tuchin, A.N. Bashkatov. J. Biomed. Photonics \& Engineering, 2 (1), 010303 (2016). DOI: 10.18287/JBPE16.02.010303
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.