Numerical study of the influence of oxyhemoglobin, deoxyhemoglobin, and methemoglobin content on the reflection, absorption, and transmission spectra of human blood
Chuchin V.Yu.1,2, Masharskaya A.A.1,2, Belikov A.V.1
1ITMO University, St. Petersburg, Russia
2VOLO LLC, St. Petersburg, Russia
Email: treasure_planet@mail.ru, alex.masharskaya@gmail.com, av.belikov@itmo.ru
The Monte Carlo method was used to numerically investigate the effect of human blood oxygenation and methemoglobin content on the reflection, absorption, and transmission spectra in the wavelength range of 400-1100 nm. It was established that replacing oxyhemoglobin with deoxyhemoglobin causes major spectral changes in the reflection, absorption, and transmission within the wavelength ranges of 450-520, 590-780, and 780-1100 nm, while replacing deoxyhemoglobin with methemoglobin leads to significant changes in the ranges of 520-590, 590-780, and 780-1100 nm. It was found that within the 520-590 nm range, with a peak at 580±5 nm, replacing oxyhemoglobin with deoxyhemoglobin does not significantly alter reflection, absorption, or transmission, whereas changes in methemoglobin content result in an increase in reflection and transmission in this spectral range while decreasing absorption. Numerical analysis demonstrated that decreasing blood oxygen saturation leads to increased transmission (optical clearing) in the 450-520 and 780-1100 nm wavelength ranges, while the presence of methemoglobin causes optical clearing in the 520-590 nm range. Keywords: Spectra, reflection, absorption, transmission, blood, methemoglobin.
- W.F. Boron, E.L. Boulpaep. Medical Physiology E-Book (Elsevier Health Sciences, Philadelphia, 2016)
- L. Dean. Blood Groups and Red Cell Antigens (NCBI, Bethesda, 2005)
- J. Mathew, P. Sankar, M. Varacallo. Physiology, Blood Plasma (StatPearls Publishing, Treasure Island (FL), 2018)
- O. Zhernovaya, V.V. Tuchin, M.J. Leahy. J. Biomed. Opt., 18 (2), 026014 (2013). DOI: 10.1117/1.jbo.18.2.026014
- V.V. Tuchin, X. Xu, R.K. Wang. Appl. Opt., 41 (1), 258 (2002). DOI: 10.1364/AO.41.000258
- T.L. Wall. Semin. Plast. Surg., 21 (3) (2007). DOI: 10.1055/s-2007-991183
- V.V. Tuchin et al. Opt. Express, 12 (13), 2966 (2004). DOI: 10.1364/opex.12.002966
- O. Zhernovaya, V.V. Tuchin, M.J. Leahy. J. Biomed. Opt., 18 (2), 026014 (2013). DOI: 10.1117/1.JBO.18.2.026014
- A.N. Bashkatov et al. J. Biomed. Photonics Eng., 3 (4), 040304 (2017). DOI: 10.18287/JBPE17.03.040304
- V.V. Tuchin, D. Zhu, E.A. Genina, eds. Handbook of Tissue Optical Clearing: New Prospects in Optical Imaging (CRC Press, 2022). DOI: 10.1201/9781003025252
- S. Kimel, B. Choi, L.O. Svaasand, J. Lotfi, J.A. Viator, J.S. Nelson. Lasers Surg. Med., 36 (4), 281 (2005). DOI: 10.1002/lsm.20154
- F. Khatun, Y. Aizu, I. Nishidate. Int. J. Mol. Sci., 22 (4), 1528 (2021). DOI: 10.3390/ijms22041528
- I.N. Yu. J. Biomed. Photonics Eng., 8 (4), 40513 (2022). DOI: 10.18287/JBPE22.08.040513
- H. Jia, B. Chen, D. Li. Lasers Med. Sci., 32, 513 (2017). DOI: 10.1007/s10103-017-2143-8
- M.A. Trelles, R. Weiss, J. Moreno-Moragas, C. Romero, M. Velez, X. Alvarez. Lasers Surg. Med., 42 (9), 769 (2010). DOI: 10.1002/lsm.20972
- D.B. Smirnov et al. Advances in 3OM: Opto-Mechatronics, Opto-Mechanics, and Optical Metrology. V. 12170 (SPIE, 2022). DOI: 10.1117/12.2622983
- V. Belikov, F.I. Feldchtein, G.B. Altshuler. US Patent 2012/0123399 A1, N 13/379,916 (17 May, 2012)
- G.E. Romanos, A.V. Belikov, A.V. Skrypnik, F.I. Feldchtein, M.Z. Smirnov, G.B. Altshuler. Lasers Surg. Med., 47 (5), 411 (2015). DOI: 10.1002/lsm.22360
- L. Cummins, M. Nauenberg. Biophys. J., 42 (1), 99 (1983). DOI: 10.1016/s0006-3495(83)84373-2
- A.E. Pushkareva, I.V. Ponomarev, S.B. Topchiy, S.V. Klyuchareva. Laser Phys., 28 (9), 096003 (2018). DOI: 10.1088/1555-6611/aac903
- B. Yakimov, K. Buiankin, G. Denisenko, Y. Shitova, A. Shkoda, E. Shirshin. Sci. Rep., 14 (1), 22874 (2024). DOI: 10.1038/s41598-024-73084-6
- V. Perekatova, E. Sergeeva, M. Kirillin, A. Khilov, D. Kurakina, I. Turchin. Opt. Commun., 579, 131440 (2025). DOI: 10.1016/j.optcom.2024.131440
- N. Bosschaart, G.J. Edelman, M.C. Aalders, T.G. van Leeuwen, D.J. Faber. Lasers Med. Sci., 29, 453 (2014). DOI: 10.1007/s10103-013-1446-7
- D.M. Duffy. Cosmet. Dermatol., 25 (3), 126 (2012)
- V.Y. Chuchin, A.A. Masharskaya, A.V. Belikov. J. Biophotonics, e202400251 (2024). DOI: 10.1002/jbio.202400251
- M.P. Goldman. Sclerotherapy, Treatment of Leg Telangiectasias with Laser and High-Intensity Pulsed Light (Elsevier, 2017), p. 388--425
- F. Bloos, K. Reinhart. Intensive Care Med., 31 (7), 911 (2005). DOI: 10.1007/s00134-005-2670-9
- L.L. Randeberg, J.H. Bonesr nning, M. Dalaker, J.S. Nelson, L.O. Svaasand. Lasers Surg. Med., 34 (5), 414 (2004). DOI: 10.1002/lsm.20042
- R.O. Wright, W.J. Lewander, A.D. Woolf. Ann. Emerg. Med., 34 (5), 646 (1999). DOI: 10.1016/s0196-0644(99)70167-8
- D.A. Rogatkin. Mes. fiz., (2), 97 (2012) (in Russian)
- W. Karlen, J. Lim, J.M. Ansermino, G. Dumont, C. Scheffer. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2448 (IEEE, 2012). DOI: 10.1109/EMBC.2012.6346459
- M. Nagai, A. Tomoda, Y. Yoneyama. J. Biol. Chem., 256 (17), 9195 (1981)
- F. Khatun, Y. Aizu, I. Nishidate. J. Biomed. Opt., 26 (3), 033708 (2021). DOI: 10.1016/S0021-9258(19)52527-3
- A.V. Belikov, V.Y. Chuchin. J. Biomed. Photonics Eng., 10 (2), 020303 (2024). DOI: 10.18287/JBPE24.10.020303
- J.W. Spliethoff et al. J. Biomed. Opt., 19 (9), 097004 (2014). DOI: 10.1117/1.JBO.19.9.097004
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.