Measurement of the refractive index of biological tissues of the head using OCT and a multi-wavelength refractometer
Shanshool A.S.
1,2, Lazareva E.N.
1,3, Surkov Yu. I.
1,4, Serebryakova I.A.
1,4, Tuchina D.K.
1,4,3, Genina E. A.
1,3, Tuchin V.V.
1,4,3,51Institute of Physics, Saratov State University, Saratov, Russia
2Al-Nahrain University, Faculty of Science, Department of Physics, Baghdad, Iraq
3Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
4Scientific Medical Center, Saratov National Research State University named after N.G. Chernyshevsky, Saratov, Russia
5Laboratory of Problems of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”, Saratov, Russia
Email: alaa2015krote@yahoo.com, lazarevaen@list.ru, tuchinadk@mail.ru, geninaea@sgu.ru, tuchinvv@mail.ru
Research and development in the field of laser biomedical diagnostics and therapy determine the interest in quantitative assessment of the optical properties of biological tissues, in particular the phase and group refractive index (RI). Knowledge of the optical dispersion dependencies of head tissues in a wide spectral range is necessary for the development of non-invasive methods for the diagnosis and treatment of brain diseases. In this regard, in this work, RI measurements were performed for rat head tissue samples (scalp, skull bone, dura mater, gray and white matter of the brain) ex vivo in the visible/near IR spectral range using optical coherence tomography (OCT) and a multi-wave Abbe refractometer for a number of laser wavelengths: 480, 486, 546, 589, 644, 656, 680, 800, 930, 1100, 1300 and 1550 nm. The phase RI values measured using a refractometer and determined from dispersion measurements and group RI at a central wavelength of 930 nm of an OCT system with a band of 100 nm were compared. The obtained RI values are in good agreement with known literature data. Keywords: refractive index, optical coherence tomography, Abbe multi-wave refractometer, head biological tissues, dispersion formulas.
- D. Abookasis, O. Meitav. In: Proc. SPIE 10864, Clinical and Translational Neurophotonics 2019, 108640R (2019)
- Z. Wang, K. Tangella, A. Balla, G. Popescu. J. Biomed. Opt., 16 (11), 116017 (2011). DOI: 10.1117/1.3656732
- E.N. Lazareva, V.V. Tuchin. J. Biomed. Opt., 23 (3), 1--9 (2018). DOI: 10.1117/1.JBO.23.3.035004
- E. Osiac, S.I. Mitran, C.N. Manea, A. Cojocaru, G.C. Rosu, M. Osiac, D.N. Pirici, A.T. Balseanu, B. Catalin. Microsc. Res. Tech., 84 (3), 422--431 (2021). DOI: 10.1002/jemt.23599
- J.M. Lee, I. Han, K.H. Nam, D.H. Kim, S. Song, H. Park, H. Kim, M. Kim, J. Choi, J.I. Lee. J. Biophotonics, 14 (11), e202100143 (2021). DOI: 10.1002/jbio.202100143
- J. Möller, A. Bartsch, M. Lenz, I. Tischoff, R. Krug, H. Welp, M.R. Hofmann, K. Schmieder, D. Miller. Int. J. Comput. Assist. Radiol. Surg., 16 (9), 1517--1526 (2021). DOI: 10.1007/s11548-021-02412-2
- A.J. Fitzgerald, X. Tie, M.J. Hackmann, B. Cense, A.P. Gibson, V.P. Wallace. Biomed. Opt. Express, 11 (3), 1417--1431 (2020). DOI: 10.1364/BOE.378506
- J. Sun, S.J. Lee, L. Wu, M. Sarntinoranont, H. Xie. Opt. Express, 20 (2), 1084--95 (2012). DOI: 10.1364/OE.20.001084
- C.J. Liu, W. Ammon, R.J. Jones, J. Nolan, R. Wang, S. Chang, M.P. Frosch, A. Yendiki, D.A. Boas, C. Magnain, B. Fischl, H. Wang. Biomed. Opt. Express, 13 (1), 358--372 (2021)
- G. Min, W.J. Choi, J.W. Kim, B.H. Lee. Opt. Express, 21 (24), 29955--67 (2013). DOI: 10.1364/OE.21.029955
- J. Binding, J. Ben Arous, J.F. Leger, S. Gigan, C. Boccara, L. Bourdieu. Opt. Express, 19 (6), 4833--47 (2011). DOI: 10.1364/OE.19.004833
- A.S. Shanshool, E.N. Lazareva, V.V. Tuchin. In: Proc. SPIE 12192, Optical Technologies for Biology and Medicine, 1219212 (2022). DOI: 10.1117/12.2634156
- A. Garcia-Valenzuela, H. Contreras-Tello. Opt. Lett., 38 (5), 775--7 (2013). DOI: 10.1364/OL.38.000775
- X. Xu, R.K. Wang, J.B. Elder, V.V. Tuchin. Phys. Med. Biol., 48 (1), 1205--1221 (2003)
- W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R.R. Dasari, M.S. Feld. Nat. Methods, 4 (9), 717--9 (2007). DOI: 10.1038/nmeth1078
- T.M. Goncalves, I.S. Martins, H.F. Silva, V.V. Tuchin, L.M. Oliveira. Photochem., 1 (2021), 190--208 (2021). DOI: 10.3390/photochem1020011
- J.J. Dirckx, L.C. Kuypers, W.F. Decraemer. J. Biomed. Opt., 10 (4), 44014 (2005). DOI: 10.1117/1.1993487
- P. Sawosz, S. Wojtkiewicz, M. Kacprzak, W. Weigl, A. Borowska-Solonynko, P. Krajewski, A. Liebert. Biomed. Opt. Express, 7 (1), 5010--5020 (2016)
- J. Yang, I.A. Chen, S. Chang, J. Tang, B. Lee, K. Kilic, S. Sunil, H. Wang, D. Varadarajan, C. Magnain, S.C. Chen, I. Costantini, F. Pavone, B. Fischl, D.A. Boas. Neurophotonics, 7 (4), 045005 (2020)
- M.E. Shvachkina, D.D. Yakovlev, E.N. Lazareva, A.B. Pravdin, D.A. Yakovlev. Opt. i spektr., 2 (127), 337--346 (2019) (in Russian)
- W. Gottschalk. Ein Messverfahren zur Bestimmung der optischen Parameter biologischer Gewebe in vitro (Universitat Karlsruhe, Karlsruhe, 1993)
- N. Lue, J. Bewersdorf, M.D. Lessard, K. Badizadegan, R.R. Dasari, M.S. Feld, G. Popescu. Opt. Lett., 32 (24), 3522-3524 (2007)
- B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, P. Magistretti. Opt. Express, 13 (23), 9361--9373 (2005)
- A.S. Shanshool, E.N. Lazareva, O. Hamdy, V.V. Tuchin. Materials, 15 (1), 5696 (2022). DOI: 10.3390/ma15165696
- J. Stritzel, M. Rahlves, B. Roth. Opt. Lett., 40 (23), 5558-5561 (2015). DOI: 10.1364/OL.40.005558
- T. Das, K. Bhattacharya. Appl. Opt., 56 (33), 9241--9246 (2017)
- J. Wang, Z. Deng, X. Wang, Q. Ye, W. Zhou, J. Mei, C. Zhang, J. Tian. Biomed. Opt. Express, 6 (7), 2536--2541 (2015)
- H. Ding, J.Q. Lu, W.A. Wooden, P.J. Kragel, X-H. Hu. Phys. Med. Biol., 51 (6), 1479--1489 (2006)
- M. Matiatou, P. Giannios, S. Koutsoumpos, K.G. Toutouzas, G.C. Zografos, K. Moutzouris. Results in Physics, 22 (1), 103833 (2021)
- A. Knuttel, S. Bonev, W. Knaak. J. Biomed. Opt., 9 (2), 265--273 (2004)
- S. Kim, J. Na, M.J. Kim, B.H. Lee. Opt. Express, 16 (8), 5516 (2008)
- D.F. Murphy, D.A. Flavin. Appl. Opt., 39 (1), 4607--4615 (2000)
- T. Fukano, I. Yamaguchi. Appl. Opt., 38 (1), 4065--4073 (1999)
- S.A. Alexandrov, A.V. Zvyagin, K.K.M.B.D. Silva, D.D. Sampson. Opt. Lett., 28, 117--119 (2003)
- X. Wang, C. Zhang, L. Zhang, L. Wu, J. Tian. J. Biomed. Opt., 7, 628--632 (2002)
- CIOMS\&ICLAS, URL: https://iclas.org/cioms-and-iclas
- W.V. Sorin, D.F. Gray. IEEE Photonics Technology Letters, 4 (1), 105--107 (1992)
- M.S. Wrobel, A.P. Popov, A.V. Bykov, M. Kinnunen, M. Jedrzejewska-Szczerska, V.V. Tuchin. J. Biomed. Opt., 20 (4), 045004 (2015)
- D.A. Zimnyakov, A.B. Pravdin, L.V. Kuznetsova, V.I. Kochubey, V.V. Tuchin, R.K. Wang, O.V. Ushakova. JOSA, 24 (3), 711--723 (2007)
- M. Born, E. Wolf. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light, 6th ed. (Pergamon Press-Elsevier, Oxford, 2013)
- M. Daimon, A. Masumura. Appl. Opt., 46 (18), 3811--3820 (2007). DOI: 10.1364/ao.46.003811
- M.N. Polyanskiy. Scientific Data, 11 (94), (2024). DOI: 10.1038/s41597-023-02898-2
- O. Zhernovaya, O. Sydoruk, V. Tuchin, A. Douplik. Phys. Med. Biol., 56 (13), 4013--4021 (2011). DOI: 10.1088/0031-9155/56/13/017
- O. Sydoruk, O. Zhernovaya, V. Tuchin, A. Douplik. J. Biomed. Opt., 17 (11), 115002 (2012). DOI: 10.1117/1.JBO.17.11.115002
- E.N. Lazareva, V.V. Tuchin. J. Biomed. Photon. Eng., 4 (1), 010503 (2018)
- I.Y. Yanina, A.P. Popov, A.V. Bykov, I.V. Meglinski, V.V. Tuchin. J. Biomed. Opt., 23 (1), 016003 (2018). DOI: 10.1117/1.JBO.23.1.016003
- A.N. Bashkatov, K.V. Berezin, K.N. Dvoretskiy, M.L. Chernavina, E.A. Genina, V.D. Genin, V.I. Kochubey, E.N. Lazareva, A.B. Pravdin, M.E. Shvachkina, P.A. Timoshina, D.K. Tuchina, D.D. Yakovlev, D.A. Yakovlev, I.Yu. Yanina, O.S. Zhernovaya, V.V. Tuchin. J. Biomed. Opt., 23 (9), 091416 (2018). DOI: 10.1117/1.JBO.23.9.091416
- I. Carneiro, S. Carvalho, V. Silva, R. Henrique, L. Oliveira, V.V. Tuchin. J. Biomed. Opt., 23 (12), 121620 (2018). DOI: 10.1117/1.JBO.23.12.121620
- G.J. Tearney, M.E. Brezinski, J.F. Southern, B.E. Bouma, M.R. Hee, J.G. Fujimoto. Opt. Lett., 20 (21), 2258--2260 (1995)
- H. Fu, W. Gao, Z. Lin, Z. Zeng, W. Shi, J. Zhang. Photonics, MDPI, 10 (7), 841 (2023)
- R. Khan, B. Gul, Sh. Khan, H. Nisar, I. Ahmad. Photodiagnosis and Photodynamic Therapy, 33 (1), 102192 (2021)
- H. Maruyama, S. Inoue, T. Mitsuyama, M. Ohmi, M. Haruna. Appl. Opt., 41, 1315--1322 (2002)
- M. Ohmi, H. Nishi, T. Konishi, Y. Yamada, M. Haruna. Meas. Sci. Technol., 15, 1531--1535 (2004)
- A. Shirkavand, S. Farivar, E. Mohajerani, L. Ataie-Fashtami, M.H. Ghazimoradi. Lasers in Surgery and Medicine, 51 (8), 742--750 (2019). DOI: 10.1002/lsm.23095
- C. Cairos, R. Oliva-Garcia, G. Siverio, J. M. Trujillo-Sevilla, J. Manuel Rodriguez-Ramos, A. Acebes. Opt. Materials, 142, 114087 (2023)
- L. Benatto, O. Mesquita, L.S. Roman, M. Koehler, R.B. Capaz, G. Candiotto. Computer Physics Commun., 298, 109100 (2024). DOI: 10.1016/j.cpc.2024.109100
- E.N. Lazareva, L. Oliveira, I.Yu. Yanina, N.V. Chernomyrdin, G.R. Musina, D.K. Tuchina, A.N. Bashkatov, K.I. Zaytsev, V.V. Tuchin. Refractive index measurements of tissue and blood components and OCAs in a wide spectral range. In: Handbook of tissue optical clearing: New prospects in optical imaging, eds. V.V. Tuchin, D. Zhu, E.A. Genina (Taylor \& Francis Group LLC, CRC Press, Boca Raton, FL, 2022). https://www.routledge.com/Handbook-of-Tissue-Optical- Clearing-New-Prospects-in-Optical-Imaging/Tuchin-Zhu- Genina/p/book/9780367895099
- I.S. Martins, H.F. Silva, E.N. Lazareva, N.V. Chernomyrdin, K.I. Zaytsev, L.M. Oliveira, V.V. Tuchin. Biomed. Opt. Express, 14 (1), 249--298 (2023). DOI: 10.1364/BOE.479320
- I.Yu. Yanina, E.N. Lazareva, V.V. Tuchin. Appl. Opt., 57 (17), 4839--4848 (2018). DOI: 10.1364/AO.57.004839
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.