Formation of the atomic and electronic structure of two-dimensional Si layers on CrSi2(0001)
Plyusnin N. I.1, Zavodinsky V. G., Gorkusha O. A.2
1Institute of Nanotechnologies of Microelectronics, Russian Academy of Sciences, Moscow, Russia
2Khabarovsk Branch of the Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russia
Email: plusnin.n@inme-ras.ru
A quantum mechanical simulation of the initial stage of Si growth at CrSi2(0001) has been performed. Growth was carried out by batch application of loose (0.3 ML portions) or dense (1 ML portions) Si atomic condensate to the surface of CrSi2(0001) frozen at 0 K, followed by its relaxation under the influence of quantum mechanical forces. It is shown that in the first case, Si surface phases are formed, consisting of an array of 2D and then 3D Si clusters with a tetrahedral sp3 bond. And in the second case, the formation of a solid-phase wetting layer (TSS) Si occurs: first in the form of a pseudomorphic, and then a less stable polymorphic (packing) layer. The pseudomorphic solid-phase wetting layer, in this case, repeats the three-layer packing (ABC) of atoms in the CrSi2(0001) substrate, and the polymorphic solid-phase wetting layer, in addition to packing ABC, additionally acquires a two-layer packing of AB atoms. It has been found that, at least at 1-3 ML of Si, a density spectrum of electronic states characteristic of a metal is formed in a solid-phase Si wetting layer on CrSi2(0001). Keywords: two-dimensional phases, solid-phase wetting layers, atom packing, phase transition, quantum mechanical modeling, Si, CrSi2(0001).
- N.I. Plyusnin. Condens. Matter Interphases 25, 4, 594 (2023). https://doi.org/10.17308/kcmf.2023.25/11471
- N.I. Plusnin, N.G. Galkin, V.G. Lifshits, A.P. Milenin. Phys. Low-Dim. Struct. (PLDS) 1--2, 55 (1999). https://elibrary.ru/item.asp?id=13307399
- N.I. Plyusnin, N.G. Galkin, V.G. Lifshits, A.P. Milenin. Poverkhnost. Rentgenovskie, sinkhrotronnye i nejtronnye issledovaniya, 16, 6, 22 (2000). (in Russian). http://www.issp.ac.ru/journal/surface/2000/06-2000.htm/ N.I. Plusnin, N.G. Galkin,
- S.M. Jeong, T. Kitamura. Jpn. J. Appl. Phys. 46, 9R, 5924 (2007). https://doi.org/10.1143/jjap.46.5924
- F.A. Zwanenburg, A.S. Dzurak, A. Morello, M.Y. Simmons, L.C. Hollenberg, G. Klimeck, S. Rogge S.N. Coppersmith, M.A. Eriksson. Rev. Mod. Phys. 85, 3, 961 (2013). https://doi.org/10.1103/revmodphys.85.961
- S.O. Mathias, Y. Malozovsky, L. Franklin, D. Bagayoko. J. Mod. Phys. 9, 14, 2457 (2018). https://doi.org/10.4236/jmp.2018.914158
- V.G. Lifshits, V.G. Zavodinsky, N.I. Plyusnin. Poverkhnost. Fizika, khimiya i mekhanika 3, 82 (1983). (in Russian)
- F.Y. Shiau, H.C. Cheng, L.J. Chen. J. Appl. Phys. 59, 8, 2784 (1986). https://doi.org/10.1063/1.336990
- A. Rocher, A. Oustry, D.M. Josee, M. Caumont. J. Vac. Sci. Technol. A: Vac. Surf. Films 12, 6, 3018 (1994). https://doi.org/10.1116/1.578930
- N.I. Plusnin, N.G. Galkin, V.G. Lifshits, S.A. Lobachev. Surf. Rev. Lett. 2, 4, 439 (1995). https://doi.org/10.1142/s0218625x9500039x
- O. Filonenko, A. Mogilatenko, H. Hortenbach, F. Allenstein, G. Beddies, H.J. Hinneberg. J. Cryst. Growth 262, 1--4, 281 (2004). https://doi.org/10.1016/j.jcrysgro.2003.10.054
- V.G. Zavodinsky, N.I. Plyusnin, O.A. Gorkusha. ZhTF 94, 2, 231 (2024). (in Russian). https://doi.org/10.61011/JTF.2024.02.57077. 199-23
- N.I. Plyusnin, V.G. Zavodinsky, O.A. Gorkusha. FTT 66, 2, 275 (2024). (in Russian). https://doi.org/10.61011/FTT.2024.02.57251.273
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. C\^ote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, J.W. Zwanziger. Comput. Phys. Commun. 180, 12, 2582 (2009). https://doi.org/10.1016/j.cpc.2009.07.007
- M. Bockstedte, A. Kley, J. Neugebauer, M. Scheffler. Comput. Phys. Commun. 107, 1--3, 187 (1997). https://doi.org/10.1016/S0010-4655(97)00117-3
- P. Hohenberg, W. Kohn. Phys. Rev. 136, 3B, B864 (1964). https://doi.org/10.1103/PhysRev.136.B864
- W. Kohn, L.J. Sham. Phys. Rev. 140, 4A, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133
- M. Fuchs, M. Scheffler. Comp. Phys. Commun. 119, 1, 67 (1999). http://dx.doi.org/10.1016/S0010-4655(98)00201-X
- J.P. Perdew, W. Yue. Phys. Rev. B 33, 12, 8800 (1986). https://doi.org/10.1103/PhysRevB.33.8800
- N.V. Belov. Struktura ionnykh kristallov i metallicheskikh faz, Izdatelstvo Akademii Nauk SSSR, M. (1947). (in Russian). https://ufn.ru/ru/articles/1947/9/m/
- Crystal Lattice Structures: (21 Oct 2004): The CrSi2 (C40) Structure. online resource --- https://www.atomic-scale-physics.de/lattice/struk/c40.html