Mechanical properties of multi-walled carbon chiral nanotubes and their bundles: in silico studies within the density functional theory approach in the tight-binding approximation
Glukhova O. E. 1,2, Kolesnichenko P. A. 1, Slepchenkov M. M.1
1Department of Physics, Saratov State University, Saratov, Russia
2
Email: glukhovaoe@info.sgu.ru
To calculate the electronic structure and mechanical properties of carbon multi-walled chiral nanotubes using quantum methods, original methods have been developed for I) generating super-cells of atomic grids of multi-walled tubes and II) searching for the energetically optimal atomic structure of super-cells comprising tens of thousands of atoms. Using the developed techniques and the DFTB method (the density functional method in the tight-binding approximation), the patterns of mechanical stresses under tension in the range of 0.1-10 % were investigated. It has been established that the elastic moduli (Young's, Poisson's) for bundles of three multi-walled tubes exceed those for individual similar tubes by several times, which makes them promising in the field of developing new materials for encapsulating electronic devices under extreme loads. Keywords: carbon multi-walled chiral nanotubes, Young's module, the Poissons ratio, bundles of chiral multi-walled nanotubes, density functional tight-binding (DFTB) method.
- A.V. Eletskiy. UFN 177, 233-274 (2007). (in Russian)
- Yu.A. Baimova, R.T. Murzaev, S.V. Dmitriev. FTT 56, 10, 1946 (2014). (in Russian)
- C.H. Wong, V. Vijayaraghavan. Comput. Mater. Sci. 53, 1, 268-277 (2012)
- A.M. Beese, X.D. Wei, S. Sarkar, R. Ramachandramoorthy, M.R. Roenbeck, A. Moravsky, M. Ford, F. Yavari, D.T. Keane, R.O. Loutfy, S.T. Nguyen, H.D. Espinosa. ACS Nano 8, 11, 11454-11466 (2014)
- C.F. Cornwell, C.R. Welch. Molecular Simulation, 38, 13, 1032-1037 (2012)
- X. Liu, W. Lu, O.M. Ayala, L.-P. Wang, A.M. Karlsson, Q. Yang, T.-W. Chou. Nanoscale 5, 5, 2002-2008 (2013)
- G. Gul, R. Faller, N. Ileri-Ercan. Biophys. J. 122, 10, 1748-1761 (2023)
- B. Arash, H.S. Park, T. Rabczuk. Compos. B: Eng. 80, 92-100 (2015)
- D. Zhao, X.Q. Wang, L.-H. Tam, C.L. Chow, D. Lau. Thin-Walled Struct. 196, 111536 (2024)
- Y. Li, B. Zhang. Diam. Relat. Mater. 140, Part A, 110476 (2023)
- H. Wei, H.Z.J. Ting, Y. Gong, C. Lu, O.E. Glukhova, H. Zhan. Nanomaterials (Basel), 12, 5, 760 (2022)
- J-G. Kim, D. Suh, H. Kang. Curr. Appl. Phys. 21, 96-100 (2021)
- M.V. Il'ina, O.I. Il'in, A.A. Konshin, A.A. Fedotov, O.A. Ageev. IOP Conf. Ser.: Mater. Sci. Eng. 443, 012010 (2018)
- G. Budiutama, R. Li, S. Manzhos, M. Ihara. J. Chem. Theory Comput. 19, 15, 5189-5198 (2023)
- Density Functional Tight Binding. Electronic source. https://dftb.org (date of access: 2025-04-25)
- J. Sun, X. Zhang, Y. Wang, M. Li, X. Wei, H. Liu, W. Zhou. Nano Res. 17, 7522-7532 (2024)
- A.Y. Gerasimenko, E. Kitsyuk, U.E. Kurilova, I.A. Suetina, L. Russu, M.V. Mezentseva, A. Markov, A.N. Narovlyansky, S. Kravchenko, S.V. Selishchev, O.E. Glukhova. Polymers 14, 9, 1866 (2022)