Physics of the Solid State
Volumes and Issues
Mechanical properties of multi-walled carbon chiral nanotubes and their bundles: in silico studies within the density functional theory approach in the tight-binding approximation
Glukhova O. E. 1,2, Kolesnichenko P. A. 1, Slepchenkov M. M.1
1Department of Physics, Saratov State University, Saratov, Russia
2
Email: glukhovaoe@info.sgu.ru

PDF
To calculate the electronic structure and mechanical properties of carbon multi-walled chiral nanotubes using quantum methods, original methods have been developed for I) generating super-cells of atomic grids of multi-walled tubes and II) searching for the energetically optimal atomic structure of super-cells comprising tens of thousands of atoms. Using the developed techniques and the DFTB method (the density functional method in the tight-binding approximation), the patterns of mechanical stresses under tension in the range of 0.1-10 % were investigated. It has been established that the elastic moduli (Young's, Poisson's) for bundles of three multi-walled tubes exceed those for individual similar tubes by several times, which makes them promising in the field of developing new materials for encapsulating electronic devices under extreme loads. Keywords: carbon multi-walled chiral nanotubes, Young's module, the Poissons ratio, bundles of chiral multi-walled nanotubes, density functional tight-binding (DFTB) method.
  1. A.V. Eletskiy. UFN 177, 233-274 (2007). (in Russian)
  2. Yu.A. Baimova, R.T. Murzaev, S.V. Dmitriev. FTT 56, 10, 1946 (2014). (in Russian)
  3. C.H. Wong, V. Vijayaraghavan. Comput. Mater. Sci. 53, 1, 268-277 (2012)
  4. A.M. Beese, X.D. Wei, S. Sarkar, R. Ramachandramoorthy, M.R. Roenbeck, A. Moravsky, M. Ford, F. Yavari, D.T. Keane, R.O. Loutfy, S.T. Nguyen, H.D. Espinosa. ACS Nano 8, 11, 11454-11466 (2014)
  5. C.F. Cornwell, C.R. Welch. Molecular Simulation, 38, 13, 1032-1037 (2012)
  6. X. Liu, W. Lu, O.M. Ayala, L.-P. Wang, A.M. Karlsson, Q. Yang, T.-W. Chou. Nanoscale 5, 5, 2002-2008 (2013)
  7. G. Gul, R. Faller, N. Ileri-Ercan. Biophys. J. 122, 10, 1748-1761 (2023)
  8. B. Arash, H.S. Park, T. Rabczuk. Compos. B: Eng. 80, 92-100 (2015)
  9. D. Zhao, X.Q. Wang, L.-H. Tam, C.L. Chow, D. Lau. Thin-Walled Struct. 196, 111536 (2024)
  10. Y. Li, B. Zhang. Diam. Relat. Mater. 140, Part A, 110476 (2023)
  11. H. Wei, H.Z.J. Ting, Y. Gong, C. Lu, O.E. Glukhova, H. Zhan. Nanomaterials (Basel), 12, 5, 760 (2022)
  12. J-G. Kim, D. Suh, H. Kang. Curr. Appl. Phys. 21, 96-100 (2021)
  13. M.V. Il'ina, O.I. Il'in, A.A. Konshin, A.A. Fedotov, O.A. Ageev. IOP Conf. Ser.: Mater. Sci. Eng. 443, 012010 (2018)
  14. G. Budiutama, R. Li, S. Manzhos, M. Ihara. J. Chem. Theory Comput. 19, 15, 5189-5198 (2023)
  15. Density Functional Tight Binding. Electronic source. https://dftb.org (date of access: 2025-04-25)
  16. J. Sun, X. Zhang, Y. Wang, M. Li, X. Wei, H. Liu, W. Zhou. Nano Res. 17, 7522-7532 (2024)
  17. A.Y. Gerasimenko, E. Kitsyuk, U.E. Kurilova, I.A. Suetina, L. Russu, M.V. Mezentseva, A. Markov, A.N. Narovlyansky, S. Kravchenko, S.V. Selishchev, O.E. Glukhova. Polymers 14, 9, 1866 (2022)
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru