Control of hydrogen-air mixture detonation processes by adding microdispersed aluminum particles
Khmel T.A. 1, Lavruk S.A. 1, Afanasenkov A.A. 1
1Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: khmel@itam.nsc.ru, afanasenkov@itam.nsc.ru

PDF
The results of numerical modeling of cellular detonation of hydrogen-air mixtures with additives of dispersed micron-sized aluminum particles are presented. The effect of particle size and loading on the process characteristics is established. The variety of cellular detonation forms is shown: with a regular and irregular cell, with oblique cells and an inclined front, depending on the distribution of particles in space. The development of combined instability with a layered distribution of particles is demonstrated. The obtained results allow us to consider additives of aluminum particles as a control factor for the implementation of different detonation modes in hydrogen-containing hybrid mixtures. Keywords: Detonation, gas suspensions, hydrogen-air mixture, aluminum particles, numerical modeling.
  1. B.A. Khasainov, B. Veyssiere, in Dynamics of explosions (AIAA, 1988), p. 284. DOI: 10.2514/5.9781600865886.0284.0299
  2. W. Wu, Y. Wang, K. Wu, Z. Ma, W. Han, J. Wang, G. Wang, M. Zhang, Int. J. Hydrog. Energy, 48, 24089 (2023). DOI: 10.1016/j.ijhydene.2023.03.078
  3. B. Veyssiere, W. Ingignoli, Shock Waves, 12, 291 (2003). DOI: 10.1007/s00193-002-0168-8
  4. T.A. Khmel, S.A. Lavruk, Combust. Explos. Shock Waves, 60, 374 (2024). DOI: 10.1134/S0010508224030109
  5. A.A. Afanasenkov, T.A. Khmel, Chelyab. Fiz.-Mat. Zh., 9 (2), 177 (2024) (in Russian). DOI: 10.47475/2500-0101-2024-9-2-177-186
  6. T.A. Khmel, S.A. Lavruk, Tech. Phys. Lett., 50 (4), 76 (2024). DOI: 10.61011/PJTF.2024.08.57519.19832
  7. I.A. Bedarev, K.V. Rylova, A.V. Fedorov, Combust. Explos. Shock Waves, 51, 528 (2015). DOI: 10.1134/S0010508215050032
  8. I.A. Bedarev, V.M. Temerbekov, Tech. Phys. Lett. 47, 695 (2021). DOI: 10.1134/S1063785021070166
  9. I.A. Bedarev, V.M. Temerbekov, Int. J. Hydrog. Energy, 47, 38455 (2022). DOI: 10.1016/j.ijhydene.2022.08.307
  10. G. Ciccarelli, T. Ginsberg, J. Boccio, C. Economos, K. Sato, M. Kinoshita, Combust. Flame, 99, 212 (1994). DOI: 10.1016/0010-2180(94)90124-4
  11. D.S. Sundaram, V. Yang, V.E. Zarko, Combust. Explos. Shock Waves, 51 (2), 173 (2015). DOI: 10.1134/S0010508215020045
  12. B.J. McBride, Computer program for calculation of complex chemcal equilibrium compositions and applications [Electronic source]. https://cearun.grc.nasa.gov/
  13. S.R. Tieszen, M.P. Sherman, W.B. Benedick, J.E. Shepherd, R. Knystautas, J.H.S. Lee, in Dynamics of explosions (AIAA, 1986), p. 205. DOI: 10.2514/5.9781600865800.0205.0219
  14. T.A. Khmel, S.A. Lavruk, Combust. Explos. Shock Waves, 58, 253 (2022). DOI: 10.1134/S0010508222030017
  15. A.V. Fedorov, T.A. Khmel', Combust. Explos. Shock Waves, 44, 343 (2008). DOI: 10.1007/s10573-008-0042-9

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru