Interaction of a shock wave with a quartz sand partition
S.V. Golovastov1, G.D. Rublev1, G.Yu. Bivol1, A.N. Parshikov1, V.V. Golub1
1Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
Email: golovastov@yandex.ru

PDF
The interaction of a shock wave propagating in a hydrogen-air mixture with a granular destructible partition was studied experimentally and numerically. The experiments were carrier out using a shock tube. The transverse dimensions of the diagnostic section were 40x 40 mm. The initial pressure of the gas mixture varied from 10 kPA to 50 kPA. The molar excess of hydrogen varied from 0.3 to 0.5. The partition was made of quartz sand with a small addition of a clay-based binder. The experiments were carried out at Mach numbers of 2.09-2.88, while combustion in a hydrogen-air mixture was not considered. Numerical modeling of the destruction of the sand partition was carried out using smoothed particle hydrodynamics with interparticle contact algorithms of the Godunov type. Typical pressure oscillograms and the results of high-speed visualization of the interaction processes using the Schlieren technique are presented. The attenuation coefficients of the reflected and transmitted shock waves are determined. The results are aimed at reducing the shock wave effects of an explosion in a confined space. Keywords: granular partition, shock wave, sand, wave attenuation, CSPH.
  1. A.G. John, K.D. Gardner, F.K. Lu, V.V. Volodin, S.V. Golovastov, V.V. Golub. In: Proc. 25th ISSW (Bangalore, India, 2005), https://arc.uta.edu/publications/cp_files/10044.pdf
  2. X.M. Li, M. Wang, X. Guo, Y.J. Li, Y.C. Peng. Appl. Mech. Mater., 556, 3187 (2014). DOI: 10.4028/www.scientific.net/AMM.556-562.3187
  3. H. Lv, Z. Wang, J. Li. Int. J. Multiphase Flow., 89, 255 (2017). DOI: 10.1016/j.ijmultiphaseflow.2016.07.019
  4. A.D. Resnyansky, N.K. Bourne. AIP Conf. Proc., 706 (1), 1474 (2004). DOI: 10.1063/1.1780517
  5. M. Arlery, M. Gardou, J.M. Fleureau, C. Mariotti. Int. J. Impact Eng., 37 (1), 1 (2010). DOI: 10.1016/j.ijimpeng.2009.07.009
  6. C.H. Braithwaite, J.I. Perry, N.E. Taylor, A.P. Jardine. Appl. Phys. Lett., 103 (15), 154103 (2013). DOI: 10.1063/1.4824764
  7. S.K. Dwivedi, L. Pei, R. Teeter. J. Appl. Phys., 117 (8), 085902 (2015). DOI: 10.1063/1.4913479
  8. J.W. LaJeunesse, M. Hankin, G.B. Kennedy, D.K. Spaulding, M.G. Schumaker, C.H. Neel, J.P. Borg, S.T. Stewart, N.N. Thadhani. J. Appl. Phys., 122 (1), 015901 (2017). DOI: 10.1063/1.4990625
  9. D.J. Chapman, K. Tsembelis, W.G. Proud. AIP Conf. Proc., 845 (1), 1445 (2006). DOI: 10.1063/1.2263596
  10. A.D. Resnyansky, S.A. Weckert. J. Phys.: Conf. Series, 500 (19), 192016 (2014). DOI: 10.1088/1742-6596/500/19/192016
  11. Y. Sugiyama, M. Izumo, H. Ando, A. Matsuo. Shock Waves, 28, 627 (2018). DOI: 10.1007/s00193-018-0813-5
  12. B. Fletcher. J. Physics D: Appl. Phys., 9 (2), 197 (1976). DOI: 10.1088/0022-3727/9/2/009
  13. R.T. Paton, B.W. Skews. In: Proc. 31st ISSW 2: Applications, 31, 673 (2019). DOI: 10.1007/978-3-319-91017-8_84
  14. L. Guan, J. Zhang, J. Li, Y. Ding, Y. Wang, Q. Lu. Int. J. Impact Eng., 188, 104935 (2024). DOI: 10.1016/j.ijimpeng.2024.104935
  15. S.I. Gerasimov, Yu.F. Travov, A.G. Ioilev, V.V. Pisetsky, N.N. Travova, A.P. Kalmykov, S.A. Kapinos, N.V. Lapichev, Yu.I. Faikov. Tech. Phys., 3, 300 (2022). DOI: 10.21883/TP.2022.03.53261.275-21
  16. A. Britan, T. Elperin, O. Igra, J.P. Jiang. AIP Conf. Proc., 370 (1), 971 (1996). DOI: 10.1063/1.50571
  17. A. Britan, G. Ben-Dor, O. Igra, H. Shapiro. Int. J. Multiphase Flow, 27 (4), 617 (2001). DOI: 10.1016/S0301-9322(00)00048-3
  18. O.A. Mirova, A.L. Kotelnikov, V.V. Golub, T.V. Bazhenova, A.N. Parshikov. High Temp., 54, 716 (2016). DOI: 10.1134/S0018151X16050199
  19. O.A. Mirova, A.L. Kotel'nikov, V.V. Golub, T.V. Bazhenova. High Temp., 53, 155 (2015). DOI: 10.1134/S0018151X15010174
  20. I.I. Anik'ev, M.I. Mikhailova, E.A. Sushchenko. Int. Appl. Mech., 42, 1307 (2006). DOI: 10.1007/s10778-006-0202-0
  21. A. Britan, A.V. Karpov, E.I. Vasilev, O. Igra, G. Ben-Dor, E. Shapiro. J. Fluids Eng. 126 (3), 399 (2004). DOI: 10.1115/1.1758264
  22. C.V.P. Kumar, C.H. Reddy, L.R. Sai, K.D. Kumar, S.R. Nagaraja. IOP Conf. Series: Mater. Sci. Eng., 225, 012059 (2017). DOI: 10.1088/1757-899X/225/1/012059
  23. G.S. Langdon, G.N. Nurick, N.J. Du. Plessis. Eng. Structur., 33 (12), 3537 (2011). DOI: 10.1016/j.engstruct.2011.07.017
  24. H. Onodera. Exp. Fluids, 24 (3), 238 (1998). DOI: 10.1007/s003480050170
  25. T. Schunck, D. Eckenfels. SN Appl. Sci., 3, 1 (2021). DOI: 10.1007/s42452-021-04720-3
  26. O. Ram, G. Ben-Dor, O. Sadot. Exp. Therm. Fluid Sci., 92, 211 (2018). DOI: 10.1016/j.expthermflusci.2017.11.014
  27. B. Skews. Exp. Fluids, 39, 875 (2005). DOI: 10.1007/s00348-005-0023-7
  28. S. Golovastov, A. Mikushkin, A. Mikushkina, Y. Zhilin. Exp. Fluids, 63 (6), 97 (2022). DOI: 10.1007/s00348-022-03451-4
  29. Y. Andreopoulos, S. Xanthos, K. Subramaniam. Shock Waves, 16, 455 (2007). DOI: 10.1007/s00193-007-0082-1
  30. T. Schunck, M. Bastide, D. Eckenfels, J.F. Legendre. Shock Waves, 31 (6), 511 (2021). DOI: 10.1007/s00193-021-01004-y
  31. W. Xiao, M. Andrae, N. Gebbeken. Eng. Structur., 213, 110574 (2020). DOI: 10.1016/j.engstruct.2020.110574
  32. V.S. Surov. Tech. Phys., 46 (6), 662 (2001). DOI: 10.1134/1.1379630
  33. G.Y. Bivol, V.V. Volodin, Yu.V. Zhilin, V.M. Bocharnikov. High Temp., 57 (1), 130 (2019). DOI: 10.1134/S0018151X19010024
  34. M. Rahmani, A.N. Oskouei, A.M. Petrudi. Defence Tech., 17 (5), 1660 (2021). DOI: 10.1016/j.dt.2020.09.004
  35. I.A. Znamenskaya, E.A. Karnozova. Tech. Phys., 69 (6), 791 (2024). DOI: 10.61011/TP.2024.06.58820.45-24
  36. O. Igra, J. Falcovitz, L. Houas, G. Jourdan. Progr. Aerospace Sci., 58, 1 (2013). DOI: 10.1016/j.paerosci.2012.08.003
  37. S.V. Golovastov, G.Yu. Bivol, F.S. Kuleshov, V.V. Golub. Tech. Phys. Lett., 50 (3), 41 (2024). DOI: 10.61011/PJTF.2024.05.57185.19763
  38. A.N. Parshikov, S.A. Medin. J. Comp. Phys., 180, 1 (2002). DOI: 10.1006/jcph.2002.7099
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru