Kurilova U. E.1,2,3, Chernikov A. S.2, Kochuev D. A.2, Chkalov R. V. 2, Dzus M. A.2, Kharkova A. V.2, Kazak A. V.2,4, Suetina I. A. 5, Russu L. I.5, Mezentseva M. V. 5, Khorkov K. S.2
1World-class research center "Digital biodesign and personalized healthcare", I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russian Federation
2 Institute of Information Technology and Electronics, Vladimir State University named after Alexander Grigorievich and Nikolay Grigorievich Stoletov (VlSU), Vladimir, Russia
3Institute of Biomedical Systems, National Research University "MIET", Moscow, Zelenograd, Russia
4Technopark, Federal State University of Education, Moscow, Russia
5National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya, Ministry of Health of the Russian Federation, Moscow, Russia
Email: kurilova_10@mail.ru
The article presents the results of magnetic nanoparticles studies for biomedical applications. Nanoparticles were synthesized by laser ablation in deionized water and acetone with subsequent magnetic separation. Raman spectroscopy indicates the predominance of magnetite particles among the obtained material. Scanning electron microscopy studies indicate a spherical shape of the particles, their size is 70 nm when synthesized in deionized water and 64 nm when synthesized in acetone. The cytotoxicity of nanoparticles was studied for connective tissue cells and tumor cells using a colorimetric test for assessing cell activity and fluorescence microscopy. It was found that nanoparticles are non-toxic for healthy cells, while a decrease in the number of tumor cells is achieved at a colloidal solution concentration of nanoparticles of more than 1.7 μg/ml, the creation of nanoparticles in acetone and transfer to a non-toxic solvent does not reduce the survival of cells. The results of the study indicate the prospects for the use of synthesized nanoparticles for biomedical applications related to theranostics of socially significant diseases. Keywords: laser ablation, iron nanoparticles, magnetic separation, theranostics, cytotoxicity.
- O.L. Gobbo, K. Sjaastad, M.W. Radomski, Y. Volkov, A. Prina-Mello. Theranostics, 5 (11), 1249 (2015). DOI: 10.7150/thno.11544
- X. Li, W. Li, M. Wang, Z. Liao. J. Controlled Release, 335, 437 (2021). DOI: 10.1016/j.jconrel.2021.05.042
- A. Coene, J. Leliaert. J. Appl. Phys., 131, 16 (2022). DOI: 10.1063/5.0085202
- K.X. Vazquez-Prada, J. Lam, D. Kamato, Z.P. Xu, P.J. Little, H.T. Ta. Arteriosclerosis, Thrombosis, and Vascular Biology, 41 (2), 601 (2021). DOI: 10.1161/ATVBAHA.120.315404
- S.K. Jat, H.A. Gandhi, J. Bhattacharya, M.K. Sharma. Mater. Adv., 2 (14), 4479 (2021). DOI: 10.1039/D1MA00240F
- J. Li, H. Zhang, Y. Han, Y. Hu, Z. Geng, J. Su. Theranostics, 13 (3), 931 (2023). DOI: 10.7150/thno.78639
- R. Afzalipour, S. Khoei, S. Khoee, S. Shirvalilou, N.J. Raoufi, M. Motevalian, M.Y. Karimi. Nanomedicine: Nanotechnology, Biology and Medicine, 31, 102319 (2021). DOI: 10.1016/j.nano.2020.102319
- L. Zhu, Z. Zhou, H. Mao, L. Yang. Nanomedicine, 12 (1), 73 (2017). DOI: 10.2217/nnm-2016-0316
- K. Hayashi, M. Nakamura, W. Sakamoto, T. Yogo, H. Miki, S. Ozaki, K. Ishimura. Theranostics, 3 (6), 366 (2013). DOI: 10.7150/thno.5860
- Z. Hedayatnasab, A. Dabbagh, F. Abnisa, W.M.A.W. Daud. Europ. Polymer J., 133, 109789 (2020). DOI: 10.1016/j.eurpolymj.2020.109789
- N. Senthilkumar, P.K. Sharma, N. Sood, N. Bhalla. Coordination Chem. Rev., 445, 214082 (2021). DOI: 10.1016/j.ccr.2021.214082
- A. Zhang, K. Meng, Y. Liu, Y. Pan, W. Qu, D. Chen, S. Xie. Adv. Colloid Interface Sci., 284, 10226 (2020). DOI: 10.1016/j.cis.2020.102261
- J. Nowak-Jary, B. Machnicka. Intern. J. Nanomedicine, 4067 (2023). DOI: 10.2147/IJN.S415063
- G. Stepien, M. Moros, M. Perez-Hernandez, M. Monge, L. Gutierrez, R.M. Fratila, J.M. de la Fuente. ACS Appl. Mater. Interfaces, 10 (5), 4548 (2018). DOI: 10.1021/acsami.7b18648
- S. Majidi, F. Zeinali Sehrig, S.M. Farkhani, M. Soleymani Goloujeh, A. Akbarzadeh. Artificial Cells, Nanomedicine, and Biotechnology, 44 (2), 722 (2016). DOI: 10.3109/21691401.2014.982802
- D.A. Kochuev, A.S. Chernikov, U.E. Kurilova,A.A. Voznesenskaya, A.F. Galkin, D.V. Abramov, A.V. Kazak, A.Yu. Gerasimenko, K.S. Khorkov. Pis'ma v ZhTF, 50 (12), 28 (2024) (in Russian). DOI: 10.61011/PJTF.2024.12.58061.19858
- U.E. Kurilova, A.S. Chernikov, D.A. Kochuev, L.S. Volkova, A.A. Voznesenskaya, R.V. Chkalov, K.S. Khorkov. J. Biomed. Photon. Eng., 9 (2), 020301 (2023). DOI: 10.18287/JBPE23.09.020301
- T. Mosmann. J. Immunolog. Methods, 65 (1-2), 55 (1983). DOI: 10.1016/0022-1759(83)90303-4
- E.M. Materon, C.M. Miyazaki, O. Carr, N. Joshi, P.H. Picciani, C.J. Dalmaschio, F.M. Shimizu. Appl. Surf. Sci. Adv., 6, 100163 (2021). DOI: 10.1016/j.apsadv.2021.100163
- L. Bokobza, J.L. Bruneel, M. Couzi. Chem. Phys. Lett., 590, 153 (2013). DOI: 10.1016/j.cplett.2013.10.071
- A.C. Ferrari, J. Robertson. Phys. Rev. B, 61 (20), 14095 (2000). DOI: 10.1103/PhysRevB.61.14095
- V. Amendola, P. Riello, M. Meneghetti. J. Phys. Chem. C, 115 (12), 5140 (2011). DOI: 10.1021/jp109371m
- M.A.G. Soler, G.B. Alcantara, F.Q. Soares, W.R. Viali, P.P.C. Sartoratto, J.R.L. Fernandez, P.C. Morais. Surf. Sci., 601 (18), 3921 (2007). DOI: 10.1016/j.susc.2007.04.029
- I. Chourpa, L. Douziech-Eyrolles, L. Ngaboni-Okassa, J.F. Fouquenet, S. Cohen-Jonathan, M. Souce, P. Dubois. Analyst, 130 (10), 1395 (2005). DOI: 10.1039/B419004A
- A.M. Jubb, H.C. Allen. ACS Appl. Mater. Interfaces, 2 (10), 2804 (2010). DOI: 10.1021/am1004943
- T.I. Shabatina, O.I. Vernaya, V.P. Shabatin, M.Y. Melnikov. Magnetochemistry, 6 (3), 30 (2020). DOI: 10.3390/magnetochemistry6030030
- H. Aslam, S. Shukrullah, M.Y. Naz, H. Fatima, H. Hussain, S. Ullah, M.A. Assiri. J. Drug Delivery Sci. Technol., 67, 102946 (2022). DOI: 10.1016/j.jddst.2021.102946
- O.A. Aladesuyi, O.S. Oluwafemi. Nano-Structures \& Nano-Objects, 36, 101053 (2023). DOI: 10.1016/j.nanoso.2023.101053