Correlation of X-ray, TEM, and Raman Methods in the Study of Orientational Disorder in Multi-Walled Carbon Nanotubes
Bobenko N.G.1, Egorushkin V. E.1, Ponomarev A.N.1
1Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk, Russia
Email: nlitvin86@mail.ru
The effect of mechanical grinding on the structure of multi-walled carbon nanotubes (MWCNTs) with diameters of 7 nm and 18 nm was investigated using X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The results demonstrated that for 7-nm nanotubes, grinding does not cause significant changes in lattice parameters or crystallite sizes, indicating preservation of the original structure. In contrast, 18-nm samples exhibited substantial structural changes, including reduced interlayer spacing and peak splitting in Raman spectra, suggesting the formation of torsional deformations due to layer rotations relative to one another. The integrated approach combining XRD, TEM, and Raman spectroscopy revealed correlations between mechanical grinding conditions and structural changes, which are crucial for tailoring MWCNT properties for various applications such as catalysis and composites. Keywords: Multi-walled carbon nanotubes, microstructure, Raman spectroscopy, TEM, X-ray diffraction.
- M.F. Alif, R. Zainul, A. Mulyani, S. Syakirah, A. Zikri, A. Iqbal, M. Abdullah, A.A. Adeyi. Adv. J. Chem., Section A, 7, 319 (2024). DOI: 10.48309/AJCA.2024.426290.1450
- K.K. Gangu, S. Maddila, S.B. Jonnalagadda. Sci. Total Environ., 646, 1398 (2019). DOI: 10.1016/j.scitotenv.2018.07.375
- S. Kumar, H.K. Sidhu, A.K. Paul, N. Bhardwaj, N.S. Thakur, A. Deep. Sens. Diagn., 2, 1390 (2023). DOI: 10.1039/d3sd00176h
- N. Anzar, R. Hasan, M. Tyagi, N. Yadav, J. Narang. Sens. Int., 1, 100003 (2020). DOI: 10.1016/j.sintl.2020.100003
- A. Kukovecz, T. Kanyo, Z. Konya, I. Kiricsi. Carbon NY., 43, 994 (2005). DOI: 10.1016/j.carbon.2004.11.030
- C. Vishal, S.K. Raju Chinthalapati, R. Krishna Kanala, R. Raman, R. Rao Bojja, R. Kanaparthi. Chemistry Select, 5, 7031 (2020). DOI: 10.1002/slct.201904413
- S. Yang. Archit. Struct. Constr., 3, 289 (2023). DOI: 10.1007/s44150-023-00090-z
- B. Xiang, R. Cheng, J. Zhu, Y. Zhou, X. Peng, J. Song, J. Wu. Sci. Rep., 13, 16081 (2023). DOI: 10.1038/s41598-023-43133-7
- K. de Almeida Barcelos, J. Garg, D.C. Ferreira Soares, A.L.B. de Barros, Y. Zhao, L. Alisaraie. J. Drug Deliv. Sci. Technol., 87, 104834 (2023). DOI: 10.1016/j.jddst.2023.104834
- F. Habeb Abdulrazzak, A. Fadel Alkiam, F. Hasan Hussein. In: Carbon Nanotubes, Intech. Open (2019). DOI: 10.5772/intechopen.85156
- W.H. Tan, S.L. Lee, C.T. Chong. Key Eng. Mater., 723, 470 (2016). DOI: 10.4028/www.scientific.net/kem.723.470
- N. Bobenko, V. Egorushkin, A. Ponomarev. Nanomaterials (Basel), 12 (2022). DOI: 10.3390/nano12183139
- M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio. Phys. Rep., 409, 47 (2005). DOI: 10.1016/j.physrep.2004.10.006
- N.G. Bobenko, V.V. Shunaev, P.M. Korusenko, V.E. Egorushkin, O.E. Glukhova. Synth. Met., 307, 117677 (2024). DOI: 10.1016/j.synthmet.2024.117677
- V.L. Kuznetsov, D.V. Krasnikov, A.N. Schmakov, K.V. Elumeeva. Phys. Status Solidi B Basic Res., 249, 2390 (2012). DOI: 10.1002/pssb.201200120
- S.I. Moseenkov, A.V. Zavorin, A.V. Ishchenko, A.N. Serkova, A.G. Selyutin, V.L. Kuznetsov. J. Struct. Chem., 61, 628 (2020). DOI: 10.1134/s0022476620040174
- L.G. Can cado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhaes-Paniago, M.A. Pimenta. Appl. Phys. Lett., 88, 163106 (2006). DOI: 10.1063/1.2196057
- D. Reznik, C.H. Olk, D.A. Neumann, J.R.D. Copley. Phys. Rev. B Condens. Matter, 52, 116 (1995). DOI: 10.1103/physrevb.52.116
- A.V. Rozhkov, A.O. Sboychakov, A.L. Rakhmanov, F. Nori. Phys. Rep., 648, 1 (2016). DOI: 10.1016/j.physrep.2016.07.003
- A.R. Stokes, A.J.C. Wilson. Proc. Phys. Soc., 56, 174 (1944). DOI: 10.1088/0959-5309/56/3/303
- N. Bobenko, Y.A. Chumakov, A. Belosludtseva. Nanosci. Technol. Int. J., 13, 67 (2022). DOI: 10.1615/nanoscitechnolintj.2022043261
- S. Zheng, Q. Cao, S. Liu, Q. Peng. J. Compos. Sci., 3, 2 (2018). DOI: 10.3390/jcs3010002
- D. Fujita. Sci. Technol. Adv. Mater., 12, 044611 (2011). DOI: 10.1088/1468-6996/12/4/044611
- R. Ishikawa, N.R. Lugg, K. Inoue, H. Sawada, T. Taniguchi, N. Shibata, Y. Ikuhara. Sci. Rep., 6, 21273 (2016). DOI: 10.1038/srep21273
- L.G. Can cado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari. Nano Lett., 11, 3190 (2011). DOI: 10.1021/nl201432g
- A.V. Burenin. Simmetriya kvantovoi vnutrimolekulyarnoi dinamiki (Inst. Prikl. Fiz. Ross. Akad. Nauk, Nizhnii Novgorod, 2021), 4th ed. (in Russian)
- K.A. Bukunov, E.A. Vorobyeva, N.G. Chechenin. Moscow Univ. Phys. Bull., 77, 50 (2022)
- I.S. Sokolov. Candidate's Dissertation in Mathematics and Physics (Kurchatovskii Inst., M., 2022) (in Russian)
- U. Mogera, G.U. Kulkarni. Carbon NY., 156, 470 (2020). DOI: 10.1016/j.carbon.2019.09.053
- K. Kim, S. Coh, L.Z. Tan, W. Regan, J.M. Yuk, E. Chatterjee, M.F. Crommie, M.L. Cohen, S.G. Louie, A. Zettl. Phys. Rev. Lett., 108, 246103 (2012). DOI: 10.1103/PhysRevLett.108.246103
- H.R. Barzegar, A. Yan, S. Coh, E. Gracia-Espino, C. Ojeda-Aristizabal, G. Cano-Marquez, L.F. Magana, M. Terrones, M. Endo, T. Hayashi. ACS Nano, 5, 10591 (2011). DOI: 10.1021/nn204579p
- B. Xiang, J. Zhu, R. Cheng, Y. Zhou, Y. Xie, P. Zhou, J. Wu. Sci. Rep., 12, 2 (2023). DOI: 10.1038/s41598-022-27005-3