Correlation of X-ray, TEM, and Raman Methods in the Study of Orientational Disorder in Multi-Walled Carbon Nanotubes
Bobenko N.G.1, Egorushkin V. E.1, Ponomarev A.N.1
1Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk, Russia
Email: nlitvin86@mail.ru

PDF
The effect of mechanical grinding on the structure of multi-walled carbon nanotubes (MWCNTs) with diameters of 7 nm and 18 nm was investigated using X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The results demonstrated that for 7-nm nanotubes, grinding does not cause significant changes in lattice parameters or crystallite sizes, indicating preservation of the original structure. In contrast, 18-nm samples exhibited substantial structural changes, including reduced interlayer spacing and peak splitting in Raman spectra, suggesting the formation of torsional deformations due to layer rotations relative to one another. The integrated approach combining XRD, TEM, and Raman spectroscopy revealed correlations between mechanical grinding conditions and structural changes, which are crucial for tailoring MWCNT properties for various applications such as catalysis and composites. Keywords: Multi-walled carbon nanotubes, microstructure, Raman spectroscopy, TEM, X-ray diffraction.
  1. M.F. Alif, R. Zainul, A. Mulyani, S. Syakirah, A. Zikri, A. Iqbal, M. Abdullah, A.A. Adeyi. Adv. J. Chem., Section A, 7, 319 (2024). DOI: 10.48309/AJCA.2024.426290.1450
  2. K.K. Gangu, S. Maddila, S.B. Jonnalagadda. Sci. Total Environ., 646, 1398 (2019). DOI: 10.1016/j.scitotenv.2018.07.375
  3. S. Kumar, H.K. Sidhu, A.K. Paul, N. Bhardwaj, N.S. Thakur, A. Deep. Sens. Diagn., 2, 1390 (2023). DOI: 10.1039/d3sd00176h
  4. N. Anzar, R. Hasan, M. Tyagi, N. Yadav, J. Narang. Sens. Int., 1, 100003 (2020). DOI: 10.1016/j.sintl.2020.100003
  5. A. Kukovecz, T. Kanyo, Z. Konya, I. Kiricsi. Carbon NY., 43, 994 (2005). DOI: 10.1016/j.carbon.2004.11.030
  6. C. Vishal, S.K. Raju Chinthalapati, R. Krishna Kanala, R. Raman, R. Rao Bojja, R. Kanaparthi. Chemistry Select, 5, 7031 (2020). DOI: 10.1002/slct.201904413
  7. S. Yang. Archit. Struct. Constr., 3, 289 (2023). DOI: 10.1007/s44150-023-00090-z
  8. B. Xiang, R. Cheng, J. Zhu, Y. Zhou, X. Peng, J. Song, J. Wu. Sci. Rep., 13, 16081 (2023). DOI: 10.1038/s41598-023-43133-7
  9. K. de Almeida Barcelos, J. Garg, D.C. Ferreira Soares, A.L.B. de Barros, Y. Zhao, L. Alisaraie. J. Drug Deliv. Sci. Technol., 87, 104834 (2023). DOI: 10.1016/j.jddst.2023.104834
  10. F. Habeb Abdulrazzak, A. Fadel Alkiam, F. Hasan Hussein. In: Carbon Nanotubes, Intech. Open (2019). DOI: 10.5772/intechopen.85156
  11. W.H. Tan, S.L. Lee, C.T. Chong. Key Eng. Mater., 723, 470 (2016). DOI: 10.4028/www.scientific.net/kem.723.470
  12. N. Bobenko, V. Egorushkin, A. Ponomarev. Nanomaterials (Basel), 12 (2022). DOI: 10.3390/nano12183139
  13. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio. Phys. Rep., 409, 47 (2005). DOI: 10.1016/j.physrep.2004.10.006
  14. N.G. Bobenko, V.V. Shunaev, P.M. Korusenko, V.E. Egorushkin, O.E. Glukhova. Synth. Met., 307, 117677 (2024). DOI: 10.1016/j.synthmet.2024.117677
  15. V.L. Kuznetsov, D.V. Krasnikov, A.N. Schmakov, K.V. Elumeeva. Phys. Status Solidi B Basic Res., 249, 2390 (2012). DOI: 10.1002/pssb.201200120
  16. S.I. Moseenkov, A.V. Zavorin, A.V. Ishchenko, A.N. Serkova, A.G. Selyutin, V.L. Kuznetsov. J. Struct. Chem., 61, 628 (2020). DOI: 10.1134/s0022476620040174
  17. L.G. Can cado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhaes-Paniago, M.A. Pimenta. Appl. Phys. Lett., 88, 163106 (2006). DOI: 10.1063/1.2196057
  18. D. Reznik, C.H. Olk, D.A. Neumann, J.R.D. Copley. Phys. Rev. B Condens. Matter, 52, 116 (1995). DOI: 10.1103/physrevb.52.116
  19. A.V. Rozhkov, A.O. Sboychakov, A.L. Rakhmanov, F. Nori. Phys. Rep., 648, 1 (2016). DOI: 10.1016/j.physrep.2016.07.003
  20. A.R. Stokes, A.J.C. Wilson. Proc. Phys. Soc., 56, 174 (1944). DOI: 10.1088/0959-5309/56/3/303
  21. N. Bobenko, Y.A. Chumakov, A. Belosludtseva. Nanosci. Technol. Int. J., 13, 67 (2022). DOI: 10.1615/nanoscitechnolintj.2022043261
  22. S. Zheng, Q. Cao, S. Liu, Q. Peng. J. Compos. Sci., 3, 2 (2018). DOI: 10.3390/jcs3010002
  23. D. Fujita. Sci. Technol. Adv. Mater., 12, 044611 (2011). DOI: 10.1088/1468-6996/12/4/044611
  24. R. Ishikawa, N.R. Lugg, K. Inoue, H. Sawada, T. Taniguchi, N. Shibata, Y. Ikuhara. Sci. Rep., 6, 21273 (2016). DOI: 10.1038/srep21273
  25. L.G. Can cado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari. Nano Lett., 11, 3190 (2011). DOI: 10.1021/nl201432g
  26. A.V. Burenin. Simmetriya kvantovoi vnutrimolekulyarnoi dinamiki (Inst. Prikl. Fiz. Ross. Akad. Nauk, Nizhnii Novgorod, 2021), 4th ed. (in Russian)
  27. K.A. Bukunov, E.A. Vorobyeva, N.G. Chechenin. Moscow Univ. Phys. Bull., 77, 50 (2022)
  28. I.S. Sokolov. Candidate's Dissertation in Mathematics and Physics (Kurchatovskii Inst., M., 2022) (in Russian)
  29. U. Mogera, G.U. Kulkarni. Carbon NY., 156, 470 (2020). DOI: 10.1016/j.carbon.2019.09.053
  30. K. Kim, S. Coh, L.Z. Tan, W. Regan, J.M. Yuk, E. Chatterjee, M.F. Crommie, M.L. Cohen, S.G. Louie, A. Zettl. Phys. Rev. Lett., 108, 246103 (2012). DOI: 10.1103/PhysRevLett.108.246103
  31. H.R. Barzegar, A. Yan, S. Coh, E. Gracia-Espino, C. Ojeda-Aristizabal, G. Cano-Marquez, L.F. Magana, M. Terrones, M. Endo, T. Hayashi. ACS Nano, 5, 10591 (2011). DOI: 10.1021/nn204579p
  32. B. Xiang, J. Zhu, R. Cheng, Y. Zhou, Y. Xie, P. Zhou, J. Wu. Sci. Rep., 12, 2 (2023). DOI: 10.1038/s41598-022-27005-3
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru