Application of machine learning methods to predict the optical absorption coefficient of composite ceramics based on hydroxyapatite
Rezvanova A.E.1, Kudryashov B.S.1, Ponomarev A.N.1,2
1Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk, Russia
2Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia
Email: ranast@ispms.ru

PDF
Models for predicting the optical absorption coefficient of hydroxyapatite-based ceramics and composites with additives of 0.1 and 0.5 wt.% multi-walled carbon nanotubes additives in the terahertz radiation frequency range from 0.2 to 1.4 THz were constructed based on experimental data using machine learning methods. The lowest value of the mean absolute error was shown by modeling using methods of adaptive boosting (0.951 %) and neural networks (0.049 %). The results of numerical simulation confirm that the use of machine learning methods makes it possible to predict the absorption coefficient with high accuracy for ceramic materials with carbon nanotube additives in the range from 0 to 0.5 wt.% concentrations. The obtained results make it possible to optimize the composition of hydroxyapatite-based ceramics to control their optical characteristics. Keywords: prediction, regression analysis, machine learning, neural networks, hydroxyapatite, multi-walled carbon nanotubes, absorption coefficient.
  1. K. Stergiou, C. Ntakolia, P. Varytis, E. Koumoulos, P. Karlsson, S. Moustakidis. Comput. Mater. Sci., 220, 112031 (2023) (in Russian). DOI: 10.1016/j.commatsci.2023.112031
  2. A. Stoll, P. Benner. GAMM Mitteilungen, 44 (1), E202100003 (2021) (in Russian). DOI: 10.1002/gamm.202100003
  3. M. Rahman, Y. Li, C. Wen. J. Magnes. Alloys., 8 (3), 929 (2020) (in Russian). DOI: 10.1016/j.jma.2020.05.003
  4. M.S. Barabashko, M.V. Tkachenko, A.A. Neiman, A.N. Ponomarev, A.E. Rezvanova. Appl. Nanosci., 10, 2601 (2020). DOI: 10.1007/s13204-019-01019-z
  5. C. Feng, K. Zhang, R. He, G. Ding, M. Xia, X. Jin, C. Xie. J. Adv. Ceram., 9, 360 (2020). DOI: 10.1007/s40145-020-0375-8
  6. P. Bawuah, D. Markl, D. Farrell, M. Evans, A. Portieri, A. Anderson, D. Goodwin, R. Lucas, J.A. Zeitler. J. Inf. Millim. Te. W., 41, 450 (2020). DOI: 10.1007/s10762-019-006590
  7. S. Cho, J. Kim, S.-B. Lee, M. Choi, D.-H. Kim, I. Jo, H. Kwon, Y. Kim. Compos. Part A Appl. Sci. Manuf., 139, 106138 (2020). DOI: 10.1016/j.compositesa.2020.106138
  8. S.M. Taromsari, M. Salari, R. Bagheri, M.A.F. Sani. Compos. B. Eng., 175, 107181 (2019). DOI: 10.1016/j.compositesb.2019.107181
  9. C. Gao, P. Feng, S. Peng, C. Shuai. Acta Biomater., 61, 1 (2017) (in Russian). DOI: 10.1016/j.actbio.2017.05.020
  10. S.A. Mikhailov. Diffuznoye zagryaznenie vodnykh sistem. Metody otsenki i matematicheskie modeli (Ecologia, Barnaul, 2000)
  11. G. Genty, L. Salmela, J.M. Dudley, D. Brunner, A. Kokhanovskiy, S. Kobtsev, Sergei K. Turitsyn. Nat. Photonics, 15 (2), 91 (2021). DOI: 10.1038/s41566-020-00716-4
  12. I.A. Hodashinsky, I.V. Filimonenko, K.S. Sarin. Optoelectron. Instrument. Proc., 53, 379 (2017). DOI: 10.3103/S8756699017040100
  13. M. Liu, H. Li, H. Zhou, H. Zhang, G. Huang. Compos. Commun., 49, 101988 (2024). DOI: 10.1016/j.coco.2024.101988
  14. P. Xu, H. Chen, M. Li, W. Lu. Adv. Theory Simul., 5 (5), 2100565 (2022). DOI: 10.1002/adts.202100565
  15. S.V. Chaudhari, J. Sristi, R. Gopal, M. Amutha, V. Akshaya, P. Vijayalakshmi. Scientific Temper., 15 (01), 1619 (2024). DOI: 10.58414/SCIENTIFICTEMPER.2024.15.1.08
  16. R. Ghosh, S. Chanda, D. Chakraborty. MEP, 95, 64 (2021). DOI: 10.1016/j.medengphy.2021.08.002
  17. A. Zarei, A. Farazin. J. Aust. Ceram. Soc., 1 (2024). DOI: 10.1007/s41779-024-01084-w
  18. K. Guo, Z. Yang, C.H. Yu, M.J. Buehle. Mater. Horizon, 8 (4), 1153 (2021) (in Russian). DOI: 10.1039/D0MH01451F
  19. W.B. Chaabene, M. Flah, M.L. Nehdi. Constr. Build. Mater., 260, 119889 (2020) (in Russian). DOI: 10.1016/j.conbuildmat.2020.119889
  20. E.O. Khazieva, N.M. Shchelkachev, A.O. Tipeev, R.E. Ryltsev. ZhETF, 164 (6), 980 (2023) (in Russian). DOI: 10.31857/S004445102312012X
  21. D.M. Liu. Ceram. Int., 23 (2), 135 (1997). DOI: 10.1016/S0272-8842(96)00009-0
  22. L.A. Golovan, V.Y. Timoshenko, P.K. Kashkarov. Phys. Usp., 50 (6), 595 (2007). DOI: 10.1070/PU2007v050n06ABEH006257
  23. E.A. Abdel Wahab, K.S. Shaaban, E.S. Yousef. OQE, 52, 1 (2020) (in Russian). DOI: 10.1007/s11082-020-02575-3
  24. A.E. Rezvanova, B.S. Kudryashov, A.N. Ponomarev, A.I. Knyazkova, V.V. Nikolaev, Y.V. Kistenev. Nanosystems: Phys. Chem. Math., 14 (5), 530 (2023). DOI: 10.17586/2220-8054-2023-14-5-530-538
  25. N.R Dreiper. Prykladnoi regressionny analyz (Ripol Classik, 1973) (in Russian)
  26. Electronic source. TensorFlow. Available at: https://www.tensorflow.org/?hl=ru (date of access: 14.11.2024)
  27. Electronic source. Keras. Available at: https://keras.io/ (date of access: 14.11.2024)
  28. S.G. Sandomyrski. Aktuanlnie voprosi machinovedenia, 7, 339 (2018) (in Russian)
  29. Z. Du, Y. Hu, N.A. Buttar. Sci. Hortic., 260, 108886 (2020) (in Russian). DOI: 10.1016/j.scienta.2019.108886
  30. Electronic source. Scikit-learn Machine Learning in Python. Scikit-learn, Available at: https://scikit-learn.org/stable/index.html (Date of access: 14.11.2024)
  31. W.C. Yang, J.Y. Yang, R.C. Kim. Adv. Mater. Sci. Eng., 2023 (1), 7069987 (2023). DOI: 10.1155/2023/7069987
  32. S. Kwak, J. Kim, H. Ding, X. Xu, R. Chen, J. Guo, H. Fu. J. Mater. Res. Technol., 18, 520 (2022). DOI: 10.1016/j.jmrt.2022.02.108
  33. A.G. Priya Varshini, K. Anitha Kumari, V. Vijayakumar. Electronics, 10 (10), 1195 (2021). DOI: 10.3390/electronics10101195
  34. C. Zhang, Y. Ma. Ensemble machine learning (Springer, NY., 2012), v. 144
  35. F. Kibrete, T. Trzepiecinski, H.S. Gebremedhen, D.E. Woldemichael. J. Compos. Sci., 7, 364 (2023). DOI: 10.3390/jcs7090364
  36. N.E. Babushkina, A.A. Rachev. Innovatsionnie tekhnologie v mashinostroenii, obrazovanii i ekonomike, 27 (2), 12 (2020) (in Russian)
  37. D..V. Shirshova, A.T. Hannanova, E.F. Hidiyatullina. Fundametalnaya i priklandaya nauka: sostoyanie i tendentsii razvitiya. Collection of scientific articles of the IV International Scientific and Practical Conference, 60 (2020) (in Russian)
  38. S. Haikin. Neironniye seti: polny kurs, 2-izd. (Williams publ.house, 2008)
  39. Yu.V. Andronov, V.N. Melnikov, A.V. Strekalov. Geologia, geophysika i razrabotka neftyanykh i gazovykh mestorozhdeniy 9, 18 (2015) (in Russian)
  40. A.S. Balykov, E.A. Kaledina, S.V. Volodin. Nanotekhnologii v stroitelstve: scientific internet journal, 15 (2), 171 (2023) (in Russian). DOI: 10.15828/2075-8545-2023-15-2-171-186
  41. A.M. Kolesnikov, I.I. Mitrichev. Uspekhi v himii i himicheskoj tekhnologii, 37 (4 (266)), 10 (2023) (in Russian)
  42. D.A. Swanson. IREF, 5 (1), 1 (2015)
  43. S. Kumar, T. Kaur. Energy Proced., 90, 587 (2016). DOI: 10.1016/j.egypro.2016.11.227
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru