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Application of machine learning methods to predict the optical

absorption coefficient of composite ceramics based on hydroxyapatite
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Models for predicting the optical absorption coefficient of hydroxyapatite-based ceramics and composites with

additives of 0.1 and 0.5wt.% multi-walled carbon nanotubes additives in the terahertz radiation frequency range

from 0.2 to 1.4 THz were constructed based on experimental data using machine learning methods. The lowest

value of the mean absolute error was shown by modeling using methods of adaptive boosting (0.951%) and neural

networks (0.049%). The results of numerical simulation confirm that the use of machine learning methods makes

it possible to predict the absorption coefficient with high accuracy for ceramic materials with carbon nanotube

additives in the range from 0 to 0.5wt.% concentrations. The obtained results make it possible to optimize the

composition of hydroxyapatite-based ceramics to control their optical characteristics.
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Introduction

Today’s research in the sphere of medical materials sci-

ence is increasingly using the numerical modelling methods

and machine learning for the analysis and prediction of

materials properties [1,2]. This is caused by the complexity

and cost of conventional experiments, as well as the need

to find quick and effective ways to investigate the behavior

of materials. The production and research of new types

of implants to replace the damaged human bone tissue,

stimulated by ever-increasing requirements in terms of

biocompatibility and similarity of physical and mechanical

characteristics with the bone tissue, led to further research

on the development of predictive models that can evaluate

the properties of the fabricated materials.

One of the promising research objects is ceramics based

on hydroxyapatite (HA) [3,4], widely used in biomedical

applications due to its biocompatibility and mechanical

properties similar to the bone tissue [5]. Improving the

characteristics of HA, such as the absorption coefficient of

electromagnetic radiation in terahertz (THz) band, is be-

coming especially relevant for development of new materials

for the touch devices, screens and biomedical implants [6].

By incorporating the multi-wall carbon nanotubes

(MWCNTs) into HA-based composite ceramics it is possible

to change the physical-mechanical properties of the material

making them almost identical to the bone tissue [7–9].
However, the experimental study of the effect of differ-

ent concentrations of MWCNTs additives on the optical

properties of HA-MWCNTs composite is associated with

difficulties due to the need to account for a large number of

variables and a wide frequency range, and the susceptibility

to errors due to test inaccuracies, equipment problems, or

differences between manufacturers.

Knowing these limitations, researchers and specialists

are increasingly using the simulation-based approaches to

predict physical and mechanical properties. Conventional

prediction methods mainly consist of empirical relationships

developed based on statistical analysis of experimental data,

where linear and nonlinear (polynomial) regression models

are established [10]. In such models, analytical equations

are generated through regression analysis to determine

unknown coefficients that affect the relationship between

the input parameter and other variables.

Machine learning methods are becoming widespread in

predicting the properties of materials, including their physi-

cal, mechanical, chemical, and optical characteristics [11,12].
Machine learning is successfully used to analyze the

mechanical strength of composite materials [13], to simulate

thermal stability of polymers [14]. In the field of biomedical

materials machine learning facilitates prediction of the

implants biocompatibility [15], adhesion parameters [16],
rate of biodegradation [17]. These methods also make it

possible to predict a wide range of mechanical properties

of materials, such as modulus of elasticity, tensile and

compressive strength, etc. [18,19]. This approach contributes

to a way more quick process of developing the new

materials, minimizing the experimental validation costs [20].
Whereas mechanical and optical characteristics, such as

refractive index and absorption coefficient, are interrelated.

Porosity is the parameter which helps getting an insight into

this interrelation, because porosity directly impacts both,

physical and mechanical properties and optical behavior of

ceramic materials. The lower is the porosity the higher

is the microhardness and compression strength of HA
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ceramics [4,21]. In paper [22] the interrelation between the

porosity and refractive index of nano-composite materials

like
”
semiconductor“ was shown. A decrease in the

refractive index is observed with an increase in the porosity

of the nanocomposite. In paper [23], an interrelation

was found, among other things, between the mechanical

properties and the absorption coefficient of sodium silicate

glasses based on zirconium dioxide. Zirconium additives

contribute to higher density and modulus of elasticity

of the glasses, while the absorption coefficient decreases.

Similar behavior is observed in [24], where compaction

of HA-ceramics using MWCNTs additives also resulted in

lower absorption coefficient. Thus, determining the effect

of MWCNTs additives on optical properties will further

allow to find a relation between optical characteristics and

mechanical properties in ceramics.

Predicting the optical properties of HA-based ceramic

composite materials with MWCNTs additives is an impor-

tant research task that my ensure obtaining a wide data

array to be used in experiments and further development

of HA-MWCNTs ceramic materials. This study outlines

the findings of numerical modelling of HA-based composite

ceramics’ absorption coefficient for ceramics with 0.1wt.%

and 0.5wt.% MWCNTs in 0.2-1.4 THz frequency band. To

analyze the experimental data, machine learning methods

were used, including linear and polynomial regression,

adaptive boosting (AdaBoost) based on decision trees, and

artificial neural networks. This study is aimed at using

machine learning algorithms capable of high-precision pro-

cessing of nonlinear dependences of the optical absorption

coefficient on terahertz emission frequencies in the range

from 0.2 to 1.4 THz to build predictive models of optical

absorption spectra of porous HA-based ceramics depending

on the content of MWCNTs hardening additives. This

opens up the possibility of obtaining a wide array of data

supplementing the experiment in order to further improve

the HA-based composites for controlling both, their optical

and physical-mechanical characteristics.

1. Materials and research methods

The prediction of the absorption coefficient was carried

out for ceramic materials based on data from experimental

studies of HA without additives and with 0.1wt.% and

0.5wt.% MWCNTs, which was used to harden the HA

ceramic matrix and control its porosity by varying additives.

The experiment was carried out using terahertz time-domain

spectroscopy on spectrometer T-SPEC (EKSPLA, Estonia)
in the frequency range from 0.2 to 1.4THz according to

the procedure described in jcite24. Cylindrical samples

were tested, with thickness and diameter of (3± 0.1) and

(8± 0.05)mm respectively. The experimentally obtained

optical absorption coefficient spectra as a function of THz

radiation frequency are shown in Fig. 1, where the dots

indicate average values of the absorption coefficient, and

the lines indicate confidence intervals.

To solve the problem of predicting the absorption coeffi-

cient of a ceramic composite material, as well as choosing

the optimal model, both classical approximation methods

and some types of machine learning were used. Regression

analysis methods such as linear and polynomial regressions

were used as standard methods. Regression analysis is a set

of statistical methods used to study the effect of one or more

independent variables on a dependent variable. At the same

time, the concepts of dependent and independent variables

reflect only mathematical dependence of variables [25]. For
data processing, creation of regression models, as well as

visualization and comparison of generated models, Python

programming language was used along with Scikit-learn

library that has a slew of built-in regression methods and

also being well-integrated with other Python libraries such

as NumPy, Pandas and Matplotlib.

Linear regression is a model of x variable versus one

or several other variables with a linear dependence func-

tion [25–30], and is expressed as (1):

Y = b0 + b1x1 + b2x2 + . . . + bkx k , (1)

where b j — regression parameters (coefficients), x i —
regressors (model factors).
In practice, the relationship between the two variables is

very often non-linear, and an attempt to use linear regression

can lead to significant computational error [30].
The method of accounting for the nonlinear relationship

between variables is polynomial regression, according to the

equation (2) [26]:

Yi = b0 + b1x i + b2x2
i + . . . + bnxn

i

(i = 1, 2, . . . , n) + ε, (2)

where b j — parameters (coefficients) of regression, x i —
regressor (model factor), ε — number of model factors,

n — regression degree.

When the value of n power increases, the model better

corresponds to the non-linearity of the estimated data, but

in practice, a power of no more than 4−5 is used.. Beyond

this point the model becomes too flexible and
”
matches“

the data, which leads to high error in the data that wasn’t

used for the model
”
training“ [30,31]. To compensate

for the disadvantages of conventional linear and nonlinear

regression models, the paper introduces machine learning

methods as a serious candidate for predicting the properties

of ceramic materials. One such method is adaptive boosting

(AdaBoost), based on a random decision forest (Random
Forest), which uses multiple decision trees to improve the

accuracy and the generalizing ability of the model [32]. The
basic element of the decision forest is a decision tree, which

is a tree structure where each node corresponds to a feature,

and the branches correspond to the feature values, while

the
”
leaves“ of the trees represent classes for classification

or numerical values for regression [33,34]. AdaBoost is an

ensemble learning algorithm that uses an iterative approach

to improve prediction accuracy by learning from the errors
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Figure 1. HA-based ceramics absorption coefficients obtained from experiments.

of previous trees. This method attributes the weights for

each tree in such a way that the least accurate values

get more weight, and the most accurate ones — lose

weight [32–35].

The most popular and promising ML method is an

artificial neural network (ANN), which is a mathematical

model that is built similarly to biological neurons. ANN

consists of many simple elements — artificial neurons that

combine into complex structures to solve a variety of tasks

such as classification, regression, image processing, etc. [36].

A multilayer perceptron — is one of the most basic types of

neural networks, consisting of several layers of neurons [37],

namely — the input layer that receives input data; then the

second layer is triggered, receiving signals from the first

layer, this layer also performs signal conversion and their

further transfer to the third layer , etc. In this case, the

loss function estimates the difference between the predicted

outputs and the actual values. This method allows modelling

functions of almost any degree of complexity, depending on

the number of input and output elements used, as well as

the number of hidden layers and the number of neurons in

them [38,39].

TensorFlow and Keras libraries were used in this study

for creation of the neural network. The main elements

of a neural network are artificial neurons and activation

functions. Activation functions put the models into non-

linearity, the most commonly used of which are:

1) Sigmoid which transforms any input value in the range

from 0 to 1, which is used in the models for probability

prediction and is expressed by (3) [36]:

σ (x) =
1

1 + e−x
; (3)

2) The hyperbolic tangent (Tanh), unlike previous func-

tion, converts any input value into a range from −1

to 1, which allows to center the output values around

zero and speeds up the learning process compared to the

sigmoid (4) [36]:

tanh(x) =
ex − e−x

ex + e−x
; (4)

3) ReLU (Rectified Linear Unit) allows to avoid the

problem of gradient decay for positive values, at that, it

doesn’t require large computations but may
”
freeze“ the
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Figure 2. Data approximation by method of linear regression.

neurons, when the gradients become equal to zero and are

not updated anymore (5) [37]:

eLU(x) = max(0, x); (5)

4) Leaky ReLU — this activation function reduces the

risk of neurons
”
freezing“ allowing to get small negative

values due to introduction of additional coefficient which

slightly complicates a more simple type (6) [36]:

LeakyReLU(x) = {α · x , i f x < 0x , otherwise}. (6)

The metric of the average absolute error in percent

(MAPE) was used to compare the models (7):

M =
1

n

n∑

t=1

|Yt − Ŷt |

Yt
· 100%, (7)

where Yt and Ŷt — actual and estimated values of the target

variable for t-th sampling object, n — total number of the

test samples [40].
Using this metric, you can compare the effectiveness

of models on different training samples. The value

MAPE < 5% indicates acceptable accuracy of the indicator

prediction [41]. MAPE value in the range from 10% to

25% indicates lower accuracy, however this accuracy is

enough to predict the data, while MAPE which is higher

than 25% goes beyond the allowable accuracy and doesn’t

allow using this data for prediction purposes [42,43].

2. Prediction of ceramic material
absorption coefficient

To verify the accuracy of models, the experimental data

on the frequency dependence of the absorption coefficient

were divided into training and test data based on the Pareto

principle with a ratio of 80% to 20%, respectively. Figure

2 shows the results of training the experimental data using

linear regression.

This model demonstrated MAPE value of 7.293%, which

indicates insufficient accuracy in predicting the optical

absorption coefficient. The high error occurs due to

the nonlinear relationship between the descriptors and the

dependent variable, thereby making the linear regression

Technical Physics, 2025, Vol. 70, No. 5



830 12-th International Symposium on Optics and Biophotonics 23−27 September, 2024, Saratov, Russia

0 0.4 0.6 0.8 1.0

–
1

A
b
so

rp
ti

o
n
 c

o
ef

fi
ci

en
t,

 c
m

15

25

35

Frequency, THz

20

30

HA

0.2

Experiment
Prediction

0 0.4 0.6 0.8 1.0

–
1

A
b
so

rp
ti

o
n
 c

o
ef

fi
ci

en
t,

 c
m

16

22

30

Frequency, THz

20

26

0.2

Experiment
PredictionHA – 0.1 mass % MWCNTs

0 0.4 0.6 0.8 1.0

–
1

A
b
so

rp
ti

o
n
 c

o
ef

fi
ci

en
t,

 c
m

16

24

Frequency, THz

20

0.2

Experiment
PredictionHA – 0.5 mass % MWCNTs

18

24

18

26

22

30

28

28

Figure 3. Data approximation by method of polynomial regression.

method unsuitable for further application. Figure 3 shows

the results of data training using polynomial regression.

This model demonstrated MAPE value of 2.228,%, which

is a more acceptable result compared to linear regression

data. The results of absorption coefficient training were

also obtained using the adaptive boosting method, which

was used as a data supplement to increase the prediction

accuracy using decision forest method (Fig. 4).

The results of MAPE values obtained for the adaptive

boosting model (0.951%) show significantly higher pre-

diction accuracy compared to the polynomial regression

method, which makes this method suitable for solving such

problems.

GridSearchCV class of Keras library was used for

building the model using neural network. For the neural

network model, hyperparameters were selected from 1 to 5

of hidden layers and from 16 to 128 neurons with a step of

32 in each layer. For each layer the activation functions were

selected: ’relu’, ’tanh’, ’sigmoid’, ’selu’. Machine learning

results are given in Fig. 5.

MAPE values of the prediction models compared

Model MAPE, %

Linear regression 8.118

Polynomial regression 7.293

Adaptive boosting 0.951

Neural network 0.049

When predicting the optical absorption spectrum, the

value of MAPE = 0.049% was demonstrated, which indi-

cates the highest accuracy of prediction by a neural network

compared to other methods (see the table).

As follows from the table, the statistical indicators of

the considered models reflect the noticeable advantage of

ML methods compared to conventional regression mod-

els [37]. This can be explained by the ability of MO

methods to accurately predict the properties of complex

composite materials, where the relationship between the

structure and the optical absorption coefficient is highly

nonlinear.
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Figure 4. Prediction of absorption coefficient by adaptive boosting method.

0.4 0.4 0.40.6 0.6 0.60.8 0.8 0.81.2 1.2 1.2

–
1

A
b

so
rp

ti
o

n
 c

o
ef

fi
ci

en
t,

 c
m

10

25

35

Frequency, THz

20

30

HA

0.2 0.2 0.2

Experiment
Prediction

Experiment
Prediction

Experiment
Prediction

1.0 1.0 1.01.4 1.4 1.4

15

HA – 0.1 mass % MWCNTs HA – 0.5 mass % MWCNTs

Figure 5. The result of prediction by the neural network model.

Conclusion

In this study the numerical modeling of the absorption

coefficient of HA-based ceramics and composites with

MWCNTs additives in 0.2−1.4 THz band was performed

to predict optical parameters with concentrations of MWC-

NTs from 0wt.% to 0.5wt.%. Based on the analysis

of experimental data using ML methods, qualitative and
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quantitative dependences of the absorption coefficient on

the radiation frequency were obtained with the addition

of various concentrations of MWCNTs. The applicability

of various ML methods, such as linear and polynomial

regression, adaptive boosting (AdaBoost), as well as ANN,
the optimal hyperparameters for which were selected using

the GridSearchCV class, was evaluated. The neural network

was trained on normalized and non-normalized data, where

the accuracy of the model significantly dropped during

normalization. To compare regression models, the metric

of the average absolute error in percent (MAPE) was used,

the lowest value of which was achieved by neural network

processing and amounted to 0.049,%. The modelling results

showed that the use of machine learning made it possible

not only to effectively analyze the materials behavior, but

also to accurately predict the absorption coefficient in HA-

based ceramic materials with MWCNTs concentrations in

the range from 0 wt.% to 0.5 wt.%. This gives opportunities

to improve the content of HA-based composites to control

their optical characteristics.

The results obtained are of practical importance for the

development of new materials with controlled properties

in the field of biomedicine, radio electronics and other

high-tech industries. A promising area of further research

is the use of more complex machine learning algorithms

to account for additional factors affecting the properties

of materials, as well as experimental verification of the

generated models.
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