Bagrov A. R.
1, Bashkirov E. K.
11Samara National Research University, Samara, Russia
Email: alexander.bagrov00@mail.ru, bashkirov.ek@ssau.ru
The exact solution of a model consisting of three identical two-level atoms (qubits), one of which is in a free state and the other two are trapped in individual lossless single-mode resonators and interact resonantly with the selected mode of their resonator, is found. Based on the exact solution, the pairwise negativities and the fidelities for the two initial genuine entangled W-type qubit states and the genuine entangled GHZ-type qubit state, as well as the thermal states of the resonator fields, are calculated. The influence of thermal noise intensities of resonators and initial states of qubits on the amount of their entanglement in the process of further evolution, as well as on the features of the qubits entanglement sudden death phenomenon is investigated. Keywords: qubits, genuine entangled W-type states and GHZ-states, thermal fields, entanglement, pairwise negativity, fidelity, sudden death of entanglement.
- H.-L. Huang, D. Wu, D. Fan, X. Zhu. Science China Information Sciences, 63, 180501 (2020). DOI: 10.1007/S11432-020-2881-9
- N. Meher, S. Sivakumar. Eur. Phys. J. Plus., 137, 985 (2022). DOI: 10.1140/epjp/s13360-022-03172-x
- S. Haroche, M. Brune, J.M. Raimond. Nature Physics, 16 (3), 243 (2020). DOI: 10.1038/s41567-020-0812-1
- D. De Bernardis, A. Mercurio, S. De Liberato. J. Opt. Soc. Am. B, 41 (8), C206 (2024). DOI: 10.1364/JOSAB.522786
- Z.-L. Xiang, S. Ashhab, J.Y. You, F. Nori. Rev. Mod. Phys., 85 (2), 623 (2013). DOI: 10.1103/RevModPhys.85.623
- L.M. Georgescu, S. Ashhab, F. Nori. Rev. Mod. Phys., 88 (1), 153 (2014). DOI: 10.1103/RevModPhys.86.153
- X. Gu, A.F. Kockum, A. Miranowicz, Y.X. Liu, F. Nori Physics Reports, 718--719, 1 (2017). DOI: 10.1016/j.physrep.2017.10.002
- G. Wendin. Repts. Prog. Phys., 80, 106001 (2017). DOI: 10.1088/1361-6633/aa7e1a
- G.-Q. Li, X.-Y. Pan. Chin. Phys., 27, 020304 (2018). DOI: 10.1007/s11432-020-2881-9
- D.J. van Woerkom, P. Scarlino, J.H. Ungerer, C. Muller, J.V. Koski, A.J. Landig, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin, A. Wallraff. Phys. Rev. X, 8, 041018 (2018). DOI: 10.1103/PhysRevX.8.041018
- J. Larson, T. Mavrogordatos, S. Parkins, A. Vidiella-Barranco. J. Opt. Soc. Am. B, 41 (8), JCM1 (2024). DOI: 10.1364/JOSAB.536847
- C.-P. Yang, Q.-P. Su, S.-B. Zheng, F. Nori. New J. Phys., 18, 013025 (2016). DOI: 10.1088/1367-2630/18/1/013025
- A. Peres. Phys. Rev. Lett., 77 (8), 1413 (1996). DOI: 10.1103/PhysRevLett.77.1413
- R. Horodecki, M. Horodecki, P. Horodecki. Phys. Lett. A, 223, 333 (1996). DOI: 10.1016/S0375-9601(96)00706-2
- W.K. Wooter. Phys. Rev. Lett., 80 (10), 2245 (1998). DOI: 10.1103/PhysRevLett.80.2245
- S.N. Filippov. J. Mathem. Sci., 241, (2), 210 (2019) (in Russian). DOI: 10.1007/s10958-019-04418-3
- A. Barenco, Ch.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, H. Weinfurter. Phys. Rev. A, 52, 3457 (1995). DOI: 10.1103/PhysRevA.52.3457
- Y. Shi. Quant. Infor. Comput., 3, 84 (2003). DOI: 10.26421/QIC3.1-7
- E. Fredkin, T. Toffoli. Int. J. Theor. Phys., 21 (3-4), 219 (1982). DOI: 10.1007/bf01857727
- D.G. Cory, M.D. Price, W. Maas, E. Knill, R. Laflamme, W.H. Zurek, T.F. Havel, S.S. Somaroo. Phys. Rev. Lett., 81, 2152 (1998) DOI: 10.1103/PhysRevLett.81.2152
- M. Neeley, R.C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A.D. O'Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A.N. Cleland, J.M. Martinis. Nature, 467, 570 (2010). DOI: 10.1038/nature09418
- L. DiCarlo, M.D. Reed, L. Sun, B.R. Johnson, J.M. Chow, J.M. Gambetta, L. Frunzio, S.M. Girvin, M.H. Devoret, R.J. Schoelkopf. Nature, 467, 574 (2010). DOI: 10.1038/nature09416
- Ch.F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G.P.T. Lancaster, Ch. Becher, F. Schmidt-Kaler, R. Blatt. Nature, 404, 1478 (2004). DOI: 10.1126/science.109752
- D.C. Cole, J.J. Wu, S.D. Erickson, P.-Y. Hou, A.C. Wilson, D. Leibfried, F. Reiter. New J. Phys., 23, 073001 (2021). DOI: 10.1088/1367-2630/ac09c8
- Y. Maleki, A.M. Zheltikov. J. Opt. Soc. Am. B, 36, 443 (2019). DOI: 10.1364/JOSAB.36.000443
- P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, J. Wrachtrup. Science, 323, 1326 (2009). DOI: 10.1126/science.11572
- K. Takeda, A. Noiri, T. Nakajima, J. Yoneda, T. Kobayashi, S. Tarucha. Nature Nanotechnology, 16, 965 (2021). DOI: 10.1038/s41565-021-00925-0
- M. Ge, L.-F. Zhu, L. Qiu. Commun. Theor. Phys., 49, 1443 (2008), DOI: 10.1088/0253-6102/49/6/20
- D.-M. Lu, C.-D. Qiu. Optoelectron. Lett., 9 (2), 0157 (2013). DOI: 10.1007/s11801-013-2392-0
- K. Wu, Q. Huang, X. Zhang. Adv. Mater. Res., 662, 537 (2013). DOI: 10.4028/www.scientific.net/AMR.662.537
- K.-I. Kim, H.-M. Li, B.-K. Zhao. Int. J. Theor. Phys., 55, 241 (2016). DOI: 10.1007/s10773-015-2656-5
- W.-Ch. Qiang, G.-H. Sun, Q. Dong, O. Camacho-Nieto, Sh.-H. Dong. Quant. Information Proces., 17, 90 (2018). DOI: 10.1007/s11128-018-1851-8
- D.-M. Lu. J. Mod. Opt., 66, 424 (2019). DOI: 10.1080/09500340.2018.1537406
- M. Ali. Quant. Inform. Proces., 20, 311 (2021). DOI: 10.1007/s11128-021-03195-w
- M. Yahyavi, M.A. Jafarizadeh, N. Karimi, A. Heshmati. Prog. Theor. Exp. Phys., 2022, 093A01 (2022). DOI: 10.1093/ptep/ptac099
- C.J.-Fang, L.H.-Ping. Commun. Theor. Phys., 43, 427 (2005). DOI: 10.1088/0253-6102/43/3/010
- K. Fujii, K. Higashida, R. Kato, T. Suzuki, Yu. Wada. Intern. J. Geometric Methods Mod. Phys., 01, 721 (2004). DOI: 10.1142/S0219887804000344
- M. Youssef, N. Metwally, A.-S.F. Obada. J. Phys. B: At. Mol. Opt. Phys., 43, 095501 (2010). DOI: 10.1088/0953-4075/43/9/095501
- J.-S. Zhang, A.-X. Chen. Intern. J. Quantum Inform., 07, 1001 (2009). DOI: 10.1142/S0219749909005638
- Z.X. Man, Y.-J. Xia, N.B. An. J. Mod. Opt., 56 (8), 1022 (2009). DOI: 10.1080/09500340902887666
- J.-Yo. Zhou, S.-L. Zhao, Y. Yang, Sh. Xiao, D. He, W. Nie, Yi. Hu, J. Lu, L.-M. Kuang, Y.-Xi Liu, M.-T. Deng, D.-N. Zheng, Zh.-Ch. Xiang, L. Zhou, Z.H. Peng. Opt. Express, 32 (1), 179 (2024). DOI: 10.1364/OE.509250
- X.-W. Hou, M.-F. Wan, Z.-Q. Ma. The Europ. Phys. J. D, 66 152, (2012). DOI: 10.1140/epjd/e2012-30018-4
- A.R. Bagrov, E.K. Bashkirov. Bulletin of Samara University, natural science series 28 (1-2), 95 (2022). DOI: 10.18287/2541-7525-2022-28-1-2-95-105
- A.R. Bagrov, E.K. Bashkirov. IX Int. Conf. Infor. Techn. Nanotechn. (ITNT) 1-5. DOI: 10.1109/ITNT57377.2023.10139206
- L. Qiu, A.M. Wang, X.Q. Su, Opt. Commun., 281, 4155 (2008), DOI: 10.1016/j.optcom.2008.03.078
- F. Han, Y.-J. Xia. Intern. J. Quantum Inform., 7, 1337 (2009). DOI: 10.1142/S0219749909005821
- J.-L. Zhang, J. Ma, S.-Yu. Yu, Q. Han, B. Li. Int. J. Theor. Phys., 53, 942 (2014). DOI: 10.1007/s10773-013-1885-8
- A.R. Bagrov, E.K. Bashkirov. ZhTF, 94 (3), 341 (2024) (in Russian). DOI: 10.61011/JTF.2024.03.57370.301-23
- R. Jozsa. J. Mod. Opt., 41, 2315 (1994). DOI: 10.1080/09500349414552171