Dynamics of entanglement of an isolated atom and two Jaynes-Cummings atoms
Bagrov A. R. 1, Bashkirov E. K. 1
1Samara National Research University, Samara, Russia
Email: alexander.bagrov00@mail.ru, bashkirov.ek@ssau.ru

PDF
The exact solution of a model consisting of three identical two-level atoms (qubits), one of which is in a free state and the other two are trapped in individual lossless single-mode resonators and interact resonantly with the selected mode of their resonator, is found. Based on the exact solution, the pairwise negativities and the fidelities for the two initial genuine entangled W-type qubit states and the genuine entangled GHZ-type qubit state, as well as the thermal states of the resonator fields, are calculated. The influence of thermal noise intensities of resonators and initial states of qubits on the amount of their entanglement in the process of further evolution, as well as on the features of the qubits entanglement sudden death phenomenon is investigated. Keywords: qubits, genuine entangled W-type states and GHZ-states, thermal fields, entanglement, pairwise negativity, fidelity, sudden death of entanglement.
  1. H.-L. Huang, D. Wu, D. Fan, X. Zhu. Science China Information Sciences, 63, 180501 (2020). DOI: 10.1007/S11432-020-2881-9
  2. N. Meher, S. Sivakumar. Eur. Phys. J. Plus., 137, 985 (2022). DOI: 10.1140/epjp/s13360-022-03172-x
  3. S. Haroche, M. Brune, J.M. Raimond. Nature Physics, 16 (3), 243 (2020). DOI: 10.1038/s41567-020-0812-1
  4. D. De Bernardis, A. Mercurio, S. De Liberato. J. Opt. Soc. Am. B, 41 (8), C206 (2024). DOI: 10.1364/JOSAB.522786
  5. Z.-L. Xiang, S. Ashhab, J.Y. You, F. Nori. Rev. Mod. Phys., 85 (2), 623 (2013). DOI: 10.1103/RevModPhys.85.623
  6. L.M. Georgescu, S. Ashhab, F. Nori. Rev. Mod. Phys., 88 (1), 153 (2014). DOI: 10.1103/RevModPhys.86.153
  7. X. Gu, A.F. Kockum, A. Miranowicz, Y.X. Liu, F. Nori Physics Reports, 718--719, 1 (2017). DOI: 10.1016/j.physrep.2017.10.002
  8. G. Wendin. Repts. Prog. Phys., 80, 106001 (2017). DOI: 10.1088/1361-6633/aa7e1a
  9. G.-Q. Li, X.-Y. Pan. Chin. Phys., 27, 020304 (2018). DOI: 10.1007/s11432-020-2881-9
  10. D.J. van Woerkom, P. Scarlino, J.H. Ungerer, C. Muller, J.V. Koski, A.J. Landig, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin, A. Wallraff. Phys. Rev. X, 8, 041018 (2018). DOI: 10.1103/PhysRevX.8.041018
  11. J. Larson, T. Mavrogordatos, S. Parkins, A. Vidiella-Barranco. J. Opt. Soc. Am. B, 41 (8), JCM1 (2024). DOI: 10.1364/JOSAB.536847
  12. C.-P. Yang, Q.-P. Su, S.-B. Zheng, F. Nori. New J. Phys., 18, 013025 (2016). DOI: 10.1088/1367-2630/18/1/013025
  13. A. Peres. Phys. Rev. Lett., 77 (8), 1413 (1996). DOI: 10.1103/PhysRevLett.77.1413
  14. R. Horodecki, M. Horodecki, P. Horodecki. Phys. Lett. A, 223, 333 (1996). DOI: 10.1016/S0375-9601(96)00706-2
  15. W.K. Wooter. Phys. Rev. Lett., 80 (10), 2245 (1998). DOI: 10.1103/PhysRevLett.80.2245
  16. S.N. Filippov. J. Mathem. Sci., 241, (2), 210 (2019) (in Russian). DOI: 10.1007/s10958-019-04418-3
  17. A. Barenco, Ch.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, H. Weinfurter. Phys. Rev. A, 52, 3457 (1995). DOI: 10.1103/PhysRevA.52.3457
  18. Y. Shi. Quant. Infor. Comput., 3, 84 (2003). DOI: 10.26421/QIC3.1-7
  19. E. Fredkin, T. Toffoli. Int. J. Theor. Phys., 21 (3-4), 219 (1982). DOI: 10.1007/bf01857727
  20. D.G. Cory, M.D. Price, W. Maas, E. Knill, R. Laflamme, W.H. Zurek, T.F. Havel, S.S. Somaroo. Phys. Rev. Lett., 81, 2152 (1998) DOI: 10.1103/PhysRevLett.81.2152
  21. M. Neeley, R.C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A.D. O'Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A.N. Cleland, J.M. Martinis. Nature, 467, 570 (2010). DOI: 10.1038/nature09418
  22. L. DiCarlo, M.D. Reed, L. Sun, B.R. Johnson, J.M. Chow, J.M. Gambetta, L. Frunzio, S.M. Girvin, M.H. Devoret, R.J. Schoelkopf. Nature, 467, 574 (2010). DOI: 10.1038/nature09416
  23. Ch.F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G.P.T. Lancaster, Ch. Becher, F. Schmidt-Kaler, R. Blatt. Nature, 404, 1478 (2004). DOI: 10.1126/science.109752
  24. D.C. Cole, J.J. Wu, S.D. Erickson, P.-Y. Hou, A.C. Wilson, D. Leibfried, F. Reiter. New J. Phys., 23, 073001 (2021). DOI: 10.1088/1367-2630/ac09c8
  25. Y. Maleki, A.M. Zheltikov. J. Opt. Soc. Am. B, 36, 443 (2019). DOI: 10.1364/JOSAB.36.000443
  26. P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, J. Wrachtrup. Science, 323, 1326 (2009). DOI: 10.1126/science.11572
  27. K. Takeda, A. Noiri, T. Nakajima, J. Yoneda, T. Kobayashi, S. Tarucha. Nature Nanotechnology, 16, 965 (2021). DOI: 10.1038/s41565-021-00925-0
  28. M. Ge, L.-F. Zhu, L. Qiu. Commun. Theor. Phys., 49, 1443 (2008), DOI: 10.1088/0253-6102/49/6/20
  29. D.-M. Lu, C.-D. Qiu. Optoelectron. Lett., 9 (2), 0157 (2013). DOI: 10.1007/s11801-013-2392-0
  30. K. Wu, Q. Huang, X. Zhang. Adv. Mater. Res., 662, 537 (2013). DOI: 10.4028/www.scientific.net/AMR.662.537
  31. K.-I. Kim, H.-M. Li, B.-K. Zhao. Int. J. Theor. Phys., 55, 241 (2016). DOI: 10.1007/s10773-015-2656-5
  32. W.-Ch. Qiang, G.-H. Sun, Q. Dong, O. Camacho-Nieto, Sh.-H. Dong. Quant. Information Proces., 17, 90 (2018). DOI: 10.1007/s11128-018-1851-8
  33. D.-M. Lu. J. Mod. Opt., 66, 424 (2019). DOI: 10.1080/09500340.2018.1537406
  34. M. Ali. Quant. Inform. Proces., 20, 311 (2021). DOI: 10.1007/s11128-021-03195-w
  35. M. Yahyavi, M.A. Jafarizadeh, N. Karimi, A. Heshmati. Prog. Theor. Exp. Phys., 2022, 093A01 (2022). DOI: 10.1093/ptep/ptac099
  36. C.J.-Fang, L.H.-Ping. Commun. Theor. Phys., 43, 427 (2005). DOI: 10.1088/0253-6102/43/3/010
  37. K. Fujii, K. Higashida, R. Kato, T. Suzuki, Yu. Wada. Intern. J. Geometric Methods Mod. Phys., 01, 721 (2004). DOI: 10.1142/S0219887804000344
  38. M. Youssef, N. Metwally, A.-S.F. Obada. J. Phys. B: At. Mol. Opt. Phys., 43, 095501 (2010). DOI: 10.1088/0953-4075/43/9/095501
  39. J.-S. Zhang, A.-X. Chen. Intern. J. Quantum Inform., 07, 1001 (2009). DOI: 10.1142/S0219749909005638
  40. Z.X. Man, Y.-J. Xia, N.B. An. J. Mod. Opt., 56 (8), 1022 (2009). DOI: 10.1080/09500340902887666
  41. J.-Yo. Zhou, S.-L. Zhao, Y. Yang, Sh. Xiao, D. He, W. Nie, Yi. Hu, J. Lu, L.-M. Kuang, Y.-Xi Liu, M.-T. Deng, D.-N. Zheng, Zh.-Ch. Xiang, L. Zhou, Z.H. Peng. Opt. Express, 32 (1), 179 (2024). DOI: 10.1364/OE.509250
  42. X.-W. Hou, M.-F. Wan, Z.-Q. Ma. The Europ. Phys. J. D, 66 152, (2012). DOI: 10.1140/epjd/e2012-30018-4
  43. A.R. Bagrov, E.K. Bashkirov. Bulletin of Samara University, natural science series 28 (1-2), 95 (2022). DOI: 10.18287/2541-7525-2022-28-1-2-95-105
  44. A.R. Bagrov, E.K. Bashkirov. IX Int. Conf. Infor. Techn. Nanotechn. (ITNT) 1-5. DOI: 10.1109/ITNT57377.2023.10139206
  45. L. Qiu, A.M. Wang, X.Q. Su, Opt. Commun., 281, 4155 (2008), DOI: 10.1016/j.optcom.2008.03.078
  46. F. Han, Y.-J. Xia. Intern. J. Quantum Inform., 7, 1337 (2009). DOI: 10.1142/S0219749909005821
  47. J.-L. Zhang, J. Ma, S.-Yu. Yu, Q. Han, B. Li. Int. J. Theor. Phys., 53, 942 (2014). DOI: 10.1007/s10773-013-1885-8
  48. A.R. Bagrov, E.K. Bashkirov. ZhTF, 94 (3), 341 (2024) (in Russian). DOI: 10.61011/JTF.2024.03.57370.301-23
  49. R. Jozsa. J. Mod. Opt., 41, 2315 (1994). DOI: 10.1080/09500349414552171
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru