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Introduction

The quantum entangled states are a fundamental resource

in quantum processing of information, in particular, in

physics of quantum computing and quantum communi-

cations [1,2]. Cavity quantum electrodynamics (CQED)
which studies the interaction of qubit systems with quantum

fields of resonators under conditions that can be most

easily implemented experimentally, is a priority tool for

studying the properties of entangled states of multi-qubit

systems [3,4]. In recent years, it has become possible to use

CQED to experimentally observe entangled states of qubits

of various physical natures, such as neutral atoms, ions

in magnetic traps, superconducting rings with Josephson

junctions, quantum dots, and impurity spins [5–10]. The

theoretical studies of the qubit systems interacting with the

highlighted resonators modes within CQED are based on

Jaynes−Cummings model (JCM) and its generalizations

and expansions (see references in [11]). JCM is the

simplest fully quantum exact solvable physical model that

describes the interaction of a natural or artificial two-level

atom (qubit) with a lossless single-mode resonator field. In

recent years, JCM has been used to describe a wide range

of quantum effects of the interaction of a single atom with

a quantum electromagnetic field. To study a wider range

of quantum phenomena caused by the interaction of qubits

with the resonators quantum fields, numerous generaliza-

tions and extensions of JCM have been considered in recent

years, in particular, various versions of polyatomic JCM.

The use of entangled states for quantum computing and

communications suggests the need to choose appropriate

criteria to quantify the degree of the qubit entanglement [12].
Although the general properties of entangled states have

been studied in sufficient detail, the quantitative criteria

for qubit entanglement have so far been introduced only

for the two-qubit systems [13–15]. In case of the multi-

qubit systems, similar criteria have not been introduced to

date. The non-zero values of the entanglement criteria used,

introduced for the multi-qubit systems, indicate only the

presence of entanglement in the system, but do not allow

for a rigorous quantitative assessment of the degree of qubits

entanglement [16]. The difficulties in theoretical description

of entangled states rise significantly with the growing

number of qubits in the system. Therefore, at present,

special attention is paid to the study of the dynamics of

entanglement of the three-qubit systems. Attention to such

systems is also attracted due to the possibility of using

three-qubit models in theoretical analysis of the universal

quantum gates’ behavior in manipulating the three-qubit

quantum entangled states [17–19]. To perform arbitrary

calculations, a set of universal gates shall be deployed in the

quantum computer. Such set may include, for example, the

two-qubit gates, e.g., controlled-
”
NOT“ (CNOT) [17], and

single-qubit rotations. Alternatively, three-qubit gates such

as Toffoli or Fredkin gates may be used [18,19]. Three-qubit
gates are also important in applications such as quantum

error correction [20]. Three-qubit quantum entangled states

have been experimentally implemented in a series of tests

in systems of superconducting qubits, trapped ions, and

impurity spins [21–27].
Recently, many theoretical studies have been carried out

on the behavior pattern of various versions of triatomic

JCMs. The authors of papers [28–35] considered a three-

particle model consisting of three identical two-level atoms,

each of which is locked in an individual single-mode

resonator. In this case, each atom resonantly interacts with
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the field of its eigen resonator via single-photon processes.

The authors examined the behavior pattern of such a ternary

JCM for various initial correlated states of qubits and

resonator fields. Another version of the triatomic JCM

was reviewed in [36–44]. The authors of these papers

examined the pattern of entanglement of three identical

two-level atoms interacting with a dedicated mode of the

common quantized resonator field for the Fock, coherent,

and thermal states of the resonator field, as well as for

separable, bi-separable, and genuine entangled atomic states.

Finally, in papers [45–48], a three-qubit system consisting of

an isolated atom and two atoms trapped in a single-mode

optical resonator was considered. The authors investigated

the dynamics of entanglement of atoms for various initial

states of resonator field and entangled states of atoms.

In this paper, we investigated the exact behavior pattern

of entanglement of three identical three-level atoms in a

new three-atom model consisting of an isolated atom and

two atoms, each of which is trapped in an individual optical

or microwave resonator and resonantly interacts with the

single-mode field of this individual resonator via single-

photon transitions. We have found an exact expression for

the evolution operator of the considered triatomic model.

Based on the exact solution, we investigated the behavior

pattern of the reviewed model for the initial entangled

W- and GHZ-states of atoms, and thermal states as the

initial states of the resonator fields. The criterion of atomic

entanglement in case of initial W states were pairwise

negativity and fidelity, and in case of GHZ states — fidelity.

The choice of thermal states of the resonator fields was

determined by the following circumstance. Electromagnetic

fields of resonators are used to control the states of

natural and artificial atoms (qubits), while thermal photons

are always present in resonators. The temperatures of

resonators vary from nK for trapped magnetic ions to

room temperatures for the nitrogen-substituted vacancies in

diamond, which means a wide range of the intensities of

thermal fields of such resonators. Due to the interaction

of atoms with thermal fields of the resonators, oscillations

of Rabi parameter of atoms entanglement are possible, as

well as the sudden death of atoms entanglement, i.e., the

disappearance of entanglement at times shorter than the

decoherence time. The presence of Rabi oscillations and

destruction of the initial entanglement can lead to errors

in qubits states readout. Therefore, the study of behavior

pattern of thermal entanglement of atoms in triatomic

models is of undoubted interest for quantum computer

science.

1. Model and its exact solution

Let’s describe the model of interest. Let’s consider three

identical two-level atoms (qubits) A, B and C . The qubit A
moves freely outside the resonators, while the other two

qubits B , C are located in two independent resonators and

each resonantly interacts with the single-mode quantized

field of its ideal resonator. The Hamiltonian of such a

system in the dipole approximation and the rotating wave

approximation will be written as

Ĥint = ~γ
(

σ̂+
B b̂ + σ̂−

B b̂+
)

+ ~γ
(

σ̂+
C ĉ + σ̂−

C ĉ+
)

, (1)

where σ̂+
i = |+〉ii〈−| and σ̂−

i = |−〉ii〈+| — are raising

and lowering operators in i-th qubit, b̂(ĉ) and b̂+(ĉ+) are

operators of the destruction and creation of photons nB(nC)
in the resonator mode. When writing the Hamiltonian (1)
we assumed that the constants of B and C qubits interaction

with resonators are equal γC = γB = γ .

To find the state vector of the model described by the

Hamiltonian (1), at subsequent moments of time t it is

convenient to classify all the initial states of the system by

introducing a new parameter N = NB + NC . Here

NB(nB , nqB ) =

{

0, if nqB = nB = 0,

1, if nqB =0, nB≥1 or nqB =1, nB≥0,

NC(nC , nqC )=

{

0, if nqC = nC = 0,

1, if nqC =0, nC≥1 or nqC =1, nC≥0,

where nqB and nqC — number of excited qubits in resonators

B and C respectively, nB and nC — number of photons in

the mode of resonators B and C, respectively. Therefore,

parameter N may have only the following values: 0, 1 and 2.

For N = 2 the evolution of the state vector will take place

in a 4-dimensional Hilbert space. There are two sets of basis

vectors. The distance between them are caused by the state

of atom A. For an excited atom A, the basis vectors can be

written as:

|+A,+B ,+C , nB , nC〉, |+A,+B ,−C , nB, nC + 1〉,

|+A,−B ,+C , nB + 1, nC〉, |+A,−B ,−C , nB + 1, nC + 1〉,
(2)

and for the ground state of atom A it will be more

convenient to write the basis vectors as follows:

|−A,+B ,+C , nB , nC〉, |−A,+B ,−C , nB, nC + 1〉,

|−A,−B ,+C , nB + 1, nC〉, |−A,−B ,−C , nB + 1, nC + 1〉.
(3)

If the condition N = 1 is fulfilled, then the evolution of

the state vector of the system under consideration occurs in

a 2-dimensional Hilbert space. There are four sets of basis

vectors. Two sets of basic vectors arise from qubit A, and
the other two sets arise from evolution of the state vector

of either qubit B or qubit C . It is convenient further to

represent these sets in the form:

|+A,+B,−C , nB , 0〉, |+A,−B,−C , nB + 1, 0〉;

|+A,−B ,+C, 0, nC〉, |+A,−B ,−C , 0, nC + 1〉, (4)

|−A,+B,−C , nB , 0〉, |−A,−B ,−C , nB + 1, 0〉;
|−A,−B ,+C , 0, nC〉, |−A,−B ,−C , 0, nC + 1〉. (5)
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In case of N = 0 there’s no any evolution of vectors. The

existing two basic sets:

|+A,−B ,−C , 0, 0〉, (6)

|−A,−B ,−C , 0, 0〉. (7)

For the case N = 2 we’ve found the evolution operator Û
in the basis (2), (3):

Û =

























U11 U12 U13 0 U15 0 0 0

U21 U22 U23 0 U25 0 0 0

U31 U32 U33 0 U35 0 0 0

0 0 0 U44 0 U46 U47 U48

U51 U52 U53 0 U55 0 0 0

0 0 0 U64 0 U66 U67 U68

0 0 0 U74 0 U76 U77 U78

0 0 0 U84 0 U86 U87 U88

























,

























|+A,+B,+C , nB , nC〉
|+A,+B,−C , nB , nC + 1〉
|+A,−B ,+C , nB + 1, nC〉
|−A,+B,+C , nB , nC〉

|+A,−B ,−C , nB + 1, nC + 1〉
|−A,+B,−C , nB , nC + 1〉
|−A,−B ,+C , nB + 1, nC〉
|−A,−B ,−C , nB + 1, nC + 1〉

























↔

























1

2

3

4

5

6

7

8

























, (8)

where the elements of the evolution operator

Ui j ≡ Ui j (nB , nC , t) are written as follows:

U11 =

{

cos2
[

γt
√

nB + 1
]

, if nB = nC ,

1
2

[

cos(tθ1) + cos(tθ2)
]

, in other cases,

U21 =



















−i cos
[

γt
√

nB + 1
]

sin
[

γt
√

nC + 1
]

, if nB = nC ,

− i
[√

(nB +1)(sin(tθ2)θ1− sin(tθ1)θ2)+
√

(nC+1)(sin(tθ2)θ1+ sin(tθ1)θ2)
]

2γ
√

(nC−nB )2
,

in other cases,

U31 =



















−i cos
[

γt
√

nC + 1
]

sin
[

γt
√

nB + 1
]

, if nB = nC ,

− i
[√

(nC+1)(sin(tθ2)θ1−sin(tθ1)θ2)+
√

(nB +1)(sin(tθ2)θ1+sin(tθ1)θ2)
]

2γ
√

(nC−nB )2
,

in other cases,

U51 =







− sin2
[

γt
√

nB + 1
]

, if nB = nC ,

1
2

[

cos(tθ2)− cos(tθ1)
]

, in other cases,

U11 = U22 = U33 = U44 = U55 = U66 = U77 = U88,

U21 = U12 = U53 = U35 = U64 = U46 = U87 = U78,

U31 = U13 = U52 = U25 = U74 = U47 = U86 = U68,

U51 = U15 = U32 = U23 = U84 = U48 = U76 = U67,

where

θ1 = γ

√

(
√

nC + 1−
√

nB + 1
)2
,

θ2 = γ

√

(
√

nC + 1 +
√

nB + 1
)2
.

For the case N = 1 we’ve found the evolution operator Ŝ
in the basis (4), (5):

Ŝ =

























S11 S12 0 0 0 0 0 0

S21 S22 0 0 0 0 0 0

0 0 S33 S34 0 0 0 0

0 0 S43 S44 0 0 0 0

0 0 0 0 S55 S56 0 0

0 0 0 0 S65 S66 0 0

0 0 0 0 0 0 S77 S78

0 0 0 0 0 0 S87 S88

























,

























|+A,+B ,−C , nB , 0〉
|+A,−B ,−C , nB + 1, 0〉
|+A,−B ,+C , 0, nC〉
|+A,−B ,−C , 0, nC + 1〉
|−A,+B ,−C , nB , 0〉
|−A,−B ,−C , nB + 1, 0〉
|−A,−B ,+C, 0, nC〉
|−A,−B ,−C , 0, nC + 1〉

























←→

























1

2

3

4

5

6

7

8

























, (9)

where the elements of the evolution operator Ŝ are written

as follows:

S11(nB , t) = S22(nB , t) = S55(nB , t)

= S66(nB , t) = cos(γt
√

nB + 1),

S21(nB , t) = S12(nB , t) = S65(nB , t)

= S56(nB , t) = −i sin(γt
√

nB + 1),

S33(nC , t) = S44(nC , t) = S77(nC , t)

= S88(nC , t) = cos(γt
√

nC + 1),

S43(nC , t) = S34(nC , t) = S87(nC , t)

= S78(nC , t) = −i sin(γt
√

nC + 1).

As the initial states of the qubit subsystem we’ve selected

W-type states:

|W1(0)〉ABC = cos θ|+A,+B ,−C〉+ sin θ sinϕ|+A,−B ,+C〉

+ sin θ cosϕ|−A,+B ,+C〉,
(10)

|W2(0)〉ABC = cos θ|−A,−B ,+C〉+ sin θ sinϕ|−A,+B ,−C〉

+ sin θ cosϕ|+A,−B,−C〉,
(11)

or GHZ-type states:

|G1(0)〉ABC = cosφ|+A,+B,+C〉+ sinφ|−A,−B ,−C〉.
(12)
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Here θ, ϕ, φ — parameters defining the initial degree of

entanglement of qubits A, B and C . As the initial state of the

resonant cavity field, we choose a single-mode thermal field,

the density matrix of which is expressed by the formula:

4FnB
(0) =

∑

nB

pnB |nB〉〈nB |, 4FnC
(0) =

∑

nC

pnC |nC〉〈nC |.

(13)
Here, the statistical weights pnB and pnC are expressed by

the formula:

pnB =
n̄nB

B

(n̄B + 1)nB +1
, pnC =

n̄nC
C

(n̄C + 1)nC +1
,

where n̄B and n̄C — average number of thermal photons in

resonators B and C respectively, which is determined by the

standard Bose−Einstein formula:

n̄B(C) = (exp[~ω/kBTB(C)]− 1)−1.

Here kB — Boltzmann constant, TB(C) — temperature of

resonator B(C).
Now, thanks to evolution operators (8) and (9) it is possi-

ble to find the wave function at the moment of time t for any
initial state of the qubits for the Fock state of the resonator

fields using the equation |ψnB nC (t)〉 = Û |ψ(0)〉ABC |nB〉|nC〉,
where |ψnB nC (t)〉 — wave function describing the state of

the system, which includes qubits and the resonant field

mode, at an arbitrary moment of time t .
To calculate any known entanglement criteria for three-

qubit systems, we need to calculate the reduced two- and

three-qubit density matrices of the complete system. As a

first step to realize this goal, it is required to calculate the

density matrix of the complete system
”
three qubits+mode

of B resonator field+mode of C“ resonator field. Knowing

the explicit form of the time wave functions |ψnB nC (t)〉 we
can construct the density matrix of the complete system

4ABCFnB FnC
=

∞
∑

nB =0

∞
∑

nC=0

pnB pnC |ψnB nC (t)〉〈ψnB nC (t)|. (14)

For states (10)−(12) the formula (14) is written as

follows:

4ABCFnB FnC
=

∞
∑

nB =0

∞
∑

nC=0

pnB pnC |ψnB nC (t)〉〈ψnB nC (t)|

=p0B p0C |ψ0B0C (t)〉〈ψ0B0C (t)|+
∞
∑

nC=1

pnC p0B |ψ0B nC (t)〉

× 〈ψ0B nC (t)| +
∞
∑

nB =1

pnB p0C |ψnB0C (t)〉〈ψnB0C (t)|

+

∞
∑

nC=1

pnC

∞
∑

nB =1

pnB |ψnB nC (t)〉〈ψnB nC (t)|.

To get the three-qubit density matrix 4ABC , it is enough

to take the trace based on the variables of the field of B

resonator and C resonator:

4ABC(t) = TrFnB
TrnC4ABCFnB FnC

. (15)

To compute the two-qubit density matrix it is required

to average the three-qubit density matrix (15) over the

variables of the third qubit i.e.

4i j(t) = TrkρABC(t)(i, j, k = A, B,C; i 6= j, j 6= k, i 6= k).
(16)

2. Computation of the negativity criterion
and fidelity

When studying the entanglement of qubits in the con-

sidered model for the genuine entangled W-type states, we

will use the criterion of negativity of pairs of qubits as a

quantitative criterion of entanglement. We need to define

the negativity for qubits i and j in traditional way [13–15]:

εi j = −2
∑

k

(λi j)
−

k , (17)

where λi j — negative eigen values of the reduced two-

qubit density matrix 4T
i j(t) partially transposed over the

variables of one qubit, which has the following form for

W-states (10),(11):

4T
i j(t)=









4
i j
11 0 0 4

i j
32

0 4
i j
22 0 0

0 0 4
i j
33 0

4
i j
23 0 0 4

i j
44









,









|+i,+ j〉
|+i,− j〉
|−i,+ j〉
|−i,− j〉









←→









1

2

3

4









.

(18)
Then the formula for the negativity criterion (17) is

written as:

εi j =

√

(4i j
44 − 4

i j
11)

2 + 4|4i j
23|2 − 4

i j
11 − 4

i j
44. (19)

Let’s write down the elements of the two-qubit density

matrix (18) 4AB , which are used in formula (19) to calculate

negativity, for the state (10):

4AB
11 =

∞
∑

nC=1

pnC

∞
∑

nB =1

pnB

[

cos2 θ
(

|U12(nB , nC − 1, t)|2

+ |U22(nB , nC−1, t)|2
)

+ sin2 θ sin2 ϕ
(

|U13(nB−1, nC , t)|2

+ |U23(nB − 1, nC , t)|2
)

]

+ cos2 θp0B

×
∞
∑

nC=1

pnC

[

|U12(0, nC − 1, t)|2 + |U22(0, nC − 1, t)|2
]

+ p0C

∞
∑

nB =1

pnB

[

cos2 θ|S11(nB , t)|2 + sin2 θ sin2

× ϕ
(

|U13(nB − 1, 0, t)|2 + |U23(nB − 1, 0, t)|2
)

]

+ p0B p0C cos
2 θ|S11(0, t)|2,
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4AB
23 = sin2 θ sinϕ cosϕ

{

∞
∑

nC=1

pnC

∞
∑

nB =1

pnB

[

U33(nB−1, nC , t)

×U∗

44(nB , nC , t) + U53(nB − 1, nC , t)U∗

64(nB , nC , t)
]

+p0B

×
∞
∑

nC=1

pnC

[

S33(nC , t)U∗

44(0, nC , t)+S43(nC , t)U∗

64(0, nC , t)
]

+ p0C

∞
∑

nB=1

pnB

[

U33(nB − 1, 0, t)U∗

44(nB , 0, t)

+U53(nB−1, 0, t)U∗

64(nB , 0, t)
]

+p0B p0C

[

S33(0, t)

×U∗

44(0, 0, t) + S43(0, t)U∗

64(0, 0, t)
]

}

,

4AB
44 = sin2 θ cos2 ϕ

∞
∑

nC=0

pnC

∞
∑

nB =0

pnB

[

|U74(nB , nC , t)|2

+ |U84(nB , nC , t)|2
]

.

The elements of the two-qubit density matrix (18) 4BC ,

which are used in formula (19) to calculate negativity, for

the state (10):

4BC
11 =

∞
∑

nB=1

pnB

∞
∑

nC=1

pnC

[

cos2 θ|U12(nB , nC − 1, t)|2

+ sin2 θ sin2 ϕ|U13(nB − 1, nC , t)|2 + sin2 θ cos2

×ϕ|U44(nB , nC , t)|2
]

+p0B

∞
∑

nC=1

pnC

[

cos2 θ|U12(0, nC−1, t)|2

+ sin2 θ cos2 ϕ|U44(0, nC , t)|2
]

+ p0C

∞
∑

nB =1

pnB

[

sin2 θ sin2

× ϕ|U13(nB − 1, 0, t)|2 + sin2 θ cos2 ϕ|U44(nB , 0, t)|2
]

+ sin2 θ cos2 ϕp0B p0C |U44(0, 0, t)|2,

4BC
23 = sin θ cos θ sinϕ

{

∞
∑

nC=1

pnC

∞
∑

nB =1

pnB

[

U22(nB , nC − 1, t)

×U∗

33(nB − 1, nC , t)
]

+ sin θp0B

∞
∑

nC=1

pnC

[

U22(0, nC − 1, t)

× S∗

33(nC , t)
]

+ p0C

∞
∑

nB =1

pnB

[

S11(nB , t)U∗

33(nB − 1, 0, t)
]

+ p0B p0C S11(0, t)S∗

33(0, t)

}

,

4BC
44 =

∞
∑

nC=1

pnC

∞
∑

nB =1

pnB

[

cos2 θ|U52(nB , nC − 1, t)|2

+ sin2 θ sin2 ϕ|U53(nB − 1, nC , t)|2 + sin2 θ cos2

× ϕ|U84(nB , nC , t)|2
]

+ p0B

∞
∑

nC=1

[

sin2 θ sin2 ϕ|S43(nC , t)|2

+ cos2 θ|U52(0, nC − 1, t)|2 + sin2 θ cos2 ϕ|U84(0, nC , t)|2
]

+ p0C

∞
∑

nB=1

pnB

[

cos2 θ|S21(nB , t)|2 + sin2 θ sin2

× ϕ|U53(nB − 1, 0, t)|2 + sin2 θ cos2 ϕ|U84(nB , 0, t)|2
]

+ p0B p0C

[

cos2 θ|S21(0, t)|2 + sin2 θ sin2 ϕ|S43(0, t)|2

+ sin2 θ cos2 ϕ|U84(0, 0, t)|2
]

.

Let’s write down the elements of the two-qubit density

matrix (18) 4AB , which are used in formula (19) to calculate

negativity, for the state (11):

4AB
11 = sin2 θ cos2 ϕ

∞
∑

nC=1

pnC

∞
∑

nB =1

pnB

[

|U15(nB−1, nC−1, t)|2

+ |U25(nB − 1, nC − 1, t)|2
]

+ sin2 θ cos2 ϕp0C

×
∞
∑

nB =1

pnB |S12(nB − 1, t)|2,

4AB
33 =

∞
∑

nC=1

pnC

∞
∑

nB=1

pnB

[

sin2 θ sin2 ϕ
(

|U46(nB , nC − 1, t)|2

+ |U66(nB , nC − 1, t)|2
)

+ cos2 θ
(

|U47(nB − 1, nC , t)|2

+ |U67(nB − 1, nC, t)|2
)]

+ sin2 θ sin2 ϕp0B

∞
∑

nC=1

pnC

×
[

|U46(0, nC − 1, t)|2 + |U66(0, nC − 1, t)|2
]

+ p0C

∞
∑

nB =1

pnB

[

sin2 θ sin2 ϕ|S55(nB , t)|2

+ cos2 θ
(

|U47(nB − 1, 0, t)|2 + |U67(nB − 1, 0, t)|2
)]

+ p0B p0C sin
2 θ sin2 ϕ|S55(0, t)|2,
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4AB
44 =

∞
∑

nC=1

pnC

∞
∑

nB=1

pnB

[

sin2 θ sin2 ϕ
(

|U76(nB , nC − 1, t)|2

+ |U86(nB , nC − 1, t)|2
)

+ cos2 θ
(

|U77(nB − 1, nC , t)|2

+|U87(nB−1, nC , t)|2
)]

+p0B

∞
∑

nC=1

pnC

[

cos2 θ
(

|S77(nC , t)|2

+ |S87(nC , t)|2
)

+ sin2 θ sin2 ϕ
(

|U76(0, nC − 1, t)|2

+|U86(0, nC−1, t)|2
)]

+p0C

∞
∑

nB =1

pnB

[

sin2 θ sin2 ϕ|S65(nB , t)|2

+ cos2 θ
(

|U77(nB − 1, 0, t)|2 + |U87(nB − 1, 0, t)|2
)]

+ p0B p0C

[

sin2 θ sin2 ϕ|S65(0, t)|2

+ cos2 θ
(

|S77(0, t)|2 + |S87(0, t)|2
)]

.

The elements of the two-qubit density matrix (18) 4BC ,

which are used in formula (19) to calculate negativity, for

the state (11):

411 =
∞
∑

nC=1

pnC

∞
∑

nB =1

pnB

[

sin2 θ cos2 ϕ|U15(nB−1, nC−1, t)|2

+ sin2 θ sin2 ϕ|U46(nB , nC − 1, t)|2 + cos2 θ

× |U47(nB − 1, nC , t)|2
]

+ sin2 θ sin2 ϕp0B

×
∞
∑

nC=1

pnC

[

|U46(0, nC − 1, t)|2
]

+ cos2 θp0C

×
∞
∑

nB =1

pnB

[

|U47(nB − 1, 0, t)|2
]

,

423 = sin θ cos θ sinϕ
{

∞
∑

nC=1

pnC

∞
∑

nB =1

pnB

[

U66(nB , nC − 1, t)

×U∗

77(nB − 1, nC , t)
]

+ p0B

∞
∑

nC=1

pnC

[

U66(0, nC − 1, t)

× S∗

77(nC , t)
]

+ p0C

∞
∑

nB =1

pnB

[

S55(nB , t)U∗

77(nB − 1, 0, t)
]

+ p0B p0C S55(0, t)S∗

77(0, t)
}

,

444 =

∞
∑

nC=1

pnC

∞
∑

nB =1

pnB

[

sin2 θ cos2 ϕ|U55(nB−1, nC−1, t)|2

+ sin2 θ sin2 ϕ|U86(nB , nC − 1, t)|2 + cos2 θ

× |U87(nB − 1, nC , t)|2
]

+ p0B

∞
∑

nC=1

pnC

[

cos2 θ|S87(nC , t)|2

+ sin2 θ cos2 ϕ|S44(nC − 1, t)|2 + sin2 θ sin2

× ϕ|U86(0, nC − 1, t)|2
]

+ p0C

∞
∑

nB =1

pnB

[

sin2 θ cos2 ϕ

× |S22(nB − 1, t)|2 + sin2 θ sin2 ϕ|S65(nB , t)|2

+ cos2 θ|U87(nB − 1, 0, t)|2
]

+ p0B p0C

[

cos2 θ|S87(0, t)|2

+ sin2 θ sin2 ϕ|S65(0, t)|2 + sin2 θ cos2 ϕ
]

.

In case of GHZ states, the negativity criterion is not

quite formative, since after averaging the three-qubit density

matrix 4ABC(t) over the variables of one of the qubits,

the two remaining qubits turn out to be non-entangled.

Therefore, in this paper, as a quantitative criterion for the

entanglement of qubits, we use the fidelity level of the qubits

current state at the moment of time t and their initial GHZ-

state. In case of the resonator thermal field, the state of the

qubits at any given time is mixed. The quantitative measure

of fidelity for mixed states of qubits is determined by the

following formula [49]:

F(4, 4′) =
(

tr
√
41/24′41/2

)2

. (20)

Here 4 — initial density matrix of the system and 4′ —
qubits density matrix in the following moments of time

t > 0. The expression (20) is greatly simplified if we assume

that at the initial moment of time the system is in clear

state(4 = |ψ〉〈ψ|):

F(4, 4′) =
(

tr
√

|ψ〉〈ψ|4′|ψ〉〈ψ|
)2

= 〈ψ|4′|ψ〉 = tr(44′).

(21)

For GHZ-state (12) the density matrix 4′

ABC(t) in the

following moments of time has the following form:

4′

ABC(t)=

























411 0 0 0 0 0 0 418

0 422 0 0 0 0 0 0

0 0 433 0 0 0 0 0

0 0 0 444 0 0 0 0

0 0 0 0 455 0 0 0

0 0 0 0 0 466 0 0

0 0 0 0 0 0 477 0

481 0 0 0 0 0 0 488

























.

(22)
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Then the formula (21) for GHZ-state (12) is transformed

into the following expression:

F = cos2 φ411 + sin2 φ488 + cosφ sinφ (418 + 481) ,
(23)

where elements of the three-qubit density matrix 4′

ABC(t)
for initial state (12):

411 = cos2 φ

∞
∑

nC=0

pnC

∞
∑

nB =0

pnB

[

|U11(nB , nC , t)|2
]

,

418 = cosφ sinφ

{

∞
∑

nC=1

pnC

∞
∑

nB =1

pnB

[

U11(nB , nC , t)

×U∗

88(nB − 1, nC − 1, t)
]

+ p0B

∞
∑

nC=1

pnC

[

U11(0, nC , t)

× S∗

88(nC−1, t)
]

+p0C

∞
∑

nB =1

pnB

[

U11(nB , 0, t)S∗

66(nB−1, t)
]

+ p0B p0CU11(0, 0, t)

}

,

488 = sin2 φ

{

∞
∑

nC=1

pnC

∞
∑

nB =1

pnB

[

|U88(nB − 1, nC − 1, t)|2
]

+ p0B

∞
∑

nC=1

pnC

[

|S88(nC − 1, t)|2
]

+ p0C

∞
∑

nB =1

pnB

[

|S66(nB − 1, t)|2
]

+ p0B p0C

}

,

481 = 4∗

18.

3. Results of numerical modelling
and discussion

Fig. 1, a shows the entanglement parameter εAB(γt)
of the qubits A and B (or A and C) versus dimen-

sionless time γt for the genuine entangled state of the

qubits (10) from ϕ = π/4, θ = arccos[1/
√
3] and various

values of the average number of photons in the resonators

modes (13). Similar dependencies for the entanglement

parameter εBC(γt) of qubits B and C are shown in Fig. 1, b.

In the Figures it is clearly seen both, for the qubits A
and B , and for B and C that there’s an effect of the

entanglement sudden death and recovery in case of the

resonators’ thermal field. At the same time, for the qubits

A and B , this effect is absent in the case of vacuum initial

states of fields. For the qubits B and C the entanglement

sudden death also takes place for the vacuum fields as

well. From the Figures we may see that for the qubits

B and C the time of entanglement recovery is significantly

higher than for the qubits A and B for any strengths of

the resonators’ thermal fields. The Figures also show that

as the average number of thermal photons increases, the

maximum degree of qubit entanglement decreases rapidly.

At the same time, the decrease in the maximum degree

of entanglement for neighboring Rabi oscillations occurs

for all pairs of qubits much faster than for the case of

”
three qubits in a common resonator“ systems [44] or

”
free

qubit+ two qubits in the general resonator“ [48]. Figure 2

shows similar dependencies for another genuine entangled

initial state of qubits (11). The Figure clearly shows that the

behavior of the negativity of qubits A and B (or A and C)
for the considered initial state of the qubits (11) is similar

to the behavior of the specified value for the initial state of

qubits (10) for any thermal fields, while for qubits B and C
there are significant differences in the behavior of pairwise

negativity for the initial states of qubits (11) and (10) in the

case of low thermal intensities of resonator fields, including

vacuum states. For vacuum states of fields, the effect of

sudden death of entanglement is absent, and for low field

intensities, the time intervals during which entanglement

is absent are significantly reduced. It should be stressed

that, in contrast to the reviewed model for the earlier

studied three-qubit models of
”
free qubit+ two qubits in

common resonator“ or
”
three qubits in common resonator“

the behavior of the pairwise negativities significantly differ

for the initial W-states (10) and (11) for any intensities

of thermal fields. For these models, the duration of time

intervals between the sudden death and recovery of qubit

entanglement significantly depends on the choice of W
state. In addition, for the model

”
free qubit+ two qubits

in a common resonator“ in the case of low intensities of

the resonator’s thermal field, the effect of sudden death

of entanglement occurs only when the qubits are initially

prepared in a state of the form (10).

It is of interest to supplement the numerical calculations

of the qubit entanglement parameters for states (10)
and (11) with an analysis of analytical expressions for

pairwise negativities and fidelity in case of vacuum initial

states of resonator fields and parameters ϕ = π/4 and

θ = arccos[1/
√
3]. To complete the picture, we will also

consider the calculation of fidelity F(γt) in this case. For the

initial state (10), the pairwise negativities εAB(γt), εBC(γt)
and the fidelity F(γt) are equal

εAB(γt) =

√
2

6

(

√

5 + 4 cos(2γt) + cos(4γt) −
√
2
)

,

εBC(γt) =
1

12

(

2
√
2
√

9− 4 cos(2γt) + 5 cos(4γt)

+ 4 cos(2γt) − cos(4γt) − 7
)

and

F(γt) =
1

9
cos2(γt)

[

2 + cos(γt)
]2
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Figure 1. Negativity criterion εAB(AC)(γt) (a) and εBC (γt) (b) versus reduced time γt for the initial state of qubits (10) for ϕ = π/4,

θ = arccos[1/
√

3]. In all graphs: vacuum field n = nB = nC = 0 (black solid line), n̄B = n̄C = 0.5 (red dashed line), n̄B = n̄C = 1 (blue
dotted line).
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Figure 2. Negativity criterion εAB (γt) (a) and εBC (γt) (b) versus reduced time γt for the initial state of qubits (11) for ϕ = π/4,

θ = arccos[1/
√

3]. In all graphs: vacuum field n = nB = nC = 0 (black solid line), n̄B = n̄C = 0.5 (red dashed line), n̄B = n̄C = 1 (blue
dotted line).

respectively. For the initial state (11) the equivalent

formulae are

εAB(γt) =
1

12

(√
2
√

cos(4γt) + 4 cos(2γt) + 35

+ 2 cos(2γt) − 6
)

,

εBC(γt)=
1

3

(

√

cos(4γt)−2 cos(2γt) + 6 + cos(2γt)−2
)

,

F(γt) =
1

9

[

1 + 2 cos(γt)
]2

respectively. The analysis of pairwise negativities and

fidelities for states (10) and (11) shows that for the

vacuum initial states of the resonator fields the maxima of

the values of pairwise negatives at the moments of time

tk1
= 2πk1/γ (k1 = 1, 2, . . .) correspond to the maxima

of fidelityF(γtk1
) = 1. At these moments of time, the

qubit system returns to its original genuine entangled W-

state ( (10) or (11), respectively), and resonator fields —
return into vacuum states, while the maxima of pairwise

negatives at the moments of time tk2
= π(1 + 2k2)/γ

(k2 = 0, 1, 2, . . .) correspond to local maxima of fidelity

equal to F(γtk2
) = 1/9. At the specified moments of time,

the three-qubit system also occurs in the genuine entangled

W-states other than the initial states, and the resonator fields

return to their initial vacuum states. For the initial state (10)
and (11) full wave functions of

”
three qubit+ two modes“

system in said moments of time are

|ψ0B0C (γtk2
)〉 =

1√
3

[

|−A,+B,+C , 0B , 0C〉

− |+A,+B,−C , 0B , 0C〉 − |+A,−B ,+C , 0B , 0C〉
]

,

|ψ0B0C (γtk2
)〉 = 1√

3

[

−|−A,−B ,+C , 0B , 0C〉

− |−A,+B ,−C , 0B , 0C〉+ |+A,−B,−C , 0B , 0C〉
]

respectively. In case of initial states of qubits (10)

(1/2) arccos(3− 2
√
2) + πk3 ≤ γt ≤ −(1/2)

× arccos(3− 2
√
2) + π(k3 + 1) (k3 = 0, 1, 2, . . .),
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Figure 3. Fidelity F(γt) versus reduced time γt for the initial state of qubits (12) in case of φ = π/4. In all graphs: vacuum field

n = nB = nC = 0 (black solid line), n̄B = n̄C = 0.5 (red dashed line), n̄B = n̄C = 1 (blue dotted line). The graph (b) illustrates the plotted
curve of fidelity for the model

”
isolated qubit+ two qubits in resonator“.

for the time intervals where εBC(γt) = 0 (let’s bear in

mind, that when the calculated negativity is negative,

its value will be taken equal to zero), the effect of

sudden entanglement death takes place, the fidelity val-

ues 0 ≤ F(γt) ≤ (1/9)(2 −
√
2)(2 +

√

2−
√
2)2 will cor-

respond. In the specified time intervals the three qubit

system, naturally, is in separable state, while complete

system of
”
three qubits+ two field modes“ —- in atom-

field entangled state. Thus, in the moments of time

tk4
= π(1/2 + 2k4)/γ (k4 = 0, 1, 2, . . .), corresponding to

the minimal values of fidelity F(γtk4
) = 0, the wave function

of the complete system is

|ψ0B0C (γtk4
)〉 =

1√
3

[

−i|+A,−B ,−C , 1B , 0C〉

− i|+A,−B ,−C , 0B , 1C〉 − |−A,−B ,−C , 1B , 1C〉
]

.

A reduced three-qubit density matrix corresponds to this

state of the complete system.

4ABC = |−A,−B ,−C〉〈−A,−B,−C |.

Fig. 3, a shows the dependence of fidelity F(γt) on di-

mensionless time γt for the genuine entangled initial GHZ-

state of qubits (12) for parameter φ = π/4 and various

values of the average number of photons in resonator

modes. For comparison, Fig. 3, b shows the curve of fidelity

F(γt) versus dimensionless time γt for the same initial

GHZ-state and the same values of thermal field intensities,

but for a model where one qubit is isolated, and the other

two are locked in a common single-mode resonator. For a

more complete analysis of the considered system behavior

for the state (12) Figure 4 shows the behavior of the average

population inversion of all three qubits for the same average

number of photons as in Figure 3, a.

The analysis of temporal evolution of fidelity of the states

of three qubits analytically may be carried out for the case

of vacuum initial states of resonator fields. For the vacuum

initial states of fields nB = nC = 0 and initial GHZ-states of

qubits (12) for φ = π/4 the fidelity is expressed as

F(γt) =
1

16

[

3 + cos(2γt)
]2

. (24)

The fidelity (28) has maximal values of unity in the

moments of time tk5
= πk5/γ (k5 = 0, 1, . . .). At these

moments of time, for the wave function of the system, we

obtain

|ψ0B0C (γtk5
)〉 =

1√
2

[

|+A,+B,+C , 0B , 0C〉

+ |−A,−B ,−C , 0B , 0C〉
]

.

Thus, at specific moments of time, the system returns to

its initial state.

In the moments of time tk6
= π

2γ

(

1+2k6

)

, where

k6=0, 1, . . ., the fidelity has minimal values equal to 1/4.

The wave function corresponding to these moments is

|ψ0B0C (γtk6
)〉 = 1√

2

[

|−A,−B ,−C , 0B , 0C〉

− |+A,−B ,−C , 1B , 1C〉
]

. (25)

The three-qubit reduced density matrix corresponding

to (25) is

4ABC =
1

2
(|−A,−B ,−C〉〈−A,−B ,−C |+ |+A,−B ,−C〉

× 〈+A,−B ,−C |) = 4A ⊗ 4B ⊗ 4C ,

where

4A =
1

2
(|−A〉〈−A|+ |+A〉〈+A|),

4B = |−B〉〈−B |, 4C = |−C〉〈−C |.
Thus, at the moments of time tk6

for the initial vacuum fields

of resonators, the qubits appear in a separable mixed state
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Figure 4. Inversion of population WA(γt) + 0.5 (a) and WB(C)(γt) (b) versus reduced time γt for the initial state of qubits (12) for

φ = π/4. In all graphs: vacuum field n = nB = nC = 0 (black solid line), n̄B = n̄C = 0.5 (red dashed line), n̄B = n̄C = 1 (blue dotted

line).

where the qubits B and C are in the ground state, and the

qubit A — in the equally probable mixture of ground and

excited states. Such analysis of the system evolution is fully

confirmed by the behavior of the average population inver-

sion of qubits for vacuum fields shown in Fig. 4. With higher

intensity of the resonators’ thermal fields, the deviation

of the three-qubit state from the initial genuine entangled

GHZ-state grows significantly. Additional computations of

pairwise negativities εi j(γt) (i, j = A, B,C, j 6= i) for a

GHZ state (12) show that entanglement does not occur

between the qubit pairs at any values of thermal field

intensities.

Similar analysis for the model
”
isolated qubit+ two

qubits in the resonator
”

(Fig. 3, b) shows that the system

of qubits returns into the genuine entangled GHZ-state at

the moments of time tk7
=
√
2/3πk7/γ (k7 = 1, 2, . . .). At

that, maximal value of 4/9, will be reached in the moments

of time tk8
= π

(

1 + 2k8

)

/(
√
6γ), where k8 = 0, 1, . . ..

Therefore, the initial genuine entangled GHZ-state for the

reviewed model is less stable compared to the action of ther-

mal noise than
”
isolated qubit+ two qubits in resonator“.

Conclusion

In this work, we studied the dynamics of a system of

three identical two-level atoms (qubits), one of which is

in a free state, and each of the rest ones is locked in

an ideal resonant cavity and interacts resonantly with the

electromagnetic field mode of this resonator. We have

obtained an exact solution of the quantum equation for

evolution operator of the considered model. On its basis

we have found the exact behavior pattern of the density

matrix of complete system
”
three qubits+ two modes of

field“ for the initial genuinely entangled W- and GHZ-

type states of the qubits and thermal fields of resonators,

and also the reduced three-qubit and pairwise two-qubit

density matrices have been computed. The reduced three-

qubit density matrix is used to calculate the fidelity of

the qubits subsystem states, and pairwise two-qubit density

matrices — are used to calculate the pairwise negativity

of qubits. The calculated time dependences of pairwise

negativities for the two genuine entangled normalized W-

states of qubits (10) and (11) and the thermal states of

the resonator’s electromagnetic field for different average

photon numbers have shown that the resonator’s thermal

field does not completely destroy the initial entanglement

of qubits even for relatively high intensities of thermal

resonator noise, however, with the rise of average number

of photons the maximum degree of qubits entanglement

rapidly drops down. It is also shown that for the thermal

fields of resonators, the effect of sudden death and recovery

of entanglement occurs for all pairs of qubits. At the same

time, for a free qubit and one of the locked qubits, this

effect is absent in case of vacuum fields of resonators for

both the initial state (10) and for (11). A similar behavior

is typical for a pair of qubits in resonators for the initial state

(11), while for the same qubits in the initial state (10), the
sudden death of entanglement also occurs for the vacuum

fields of resonators. As intensity of the resonators thermal

fields rises, the time during which the entanglement of the

qubits fades away increases significantly. The analysis of

the considered system temporal behavior for vacuum states

demonstrated that for initial states of qubits (10) and (11),
odd maxima of pairwise negativities of qubits corresponded

to the system return to the initial entangled state for the

qubits and vacuum states for the fields, and even maxima —
to transition of the system to states (10) and (11), but with

different parameter values ϕ and θ.

The computations of pairwise negativities for the genuine

entangled GHZ state (12) showed that entanglement was

impossible between the qubit pairs at any values of thermal

field intensities. The computations also showed that

with higher intensity of the resonators’ thermal fields, the

deviation of the three-qubit state from the initial genuine

entangled GHZ-state grew significantly. The analysis of

temporal behavior of the considered system in case of

initial state (12) and behavior of vacuum states of the

fields allowed concluding that maximum values of fidelity
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corresponded to the return of the qubits subsystem to the

initial state (12), and return of the resonators’ fields to

vacuum states. A separable mixed state where locked

qubits are in the ground state, and the free qubit is in

an equally probable mixture of ground and excited states

are characterized by minimal fidelity values. At that, the

subsystem of atoms and resonators fields are in the atom-

field entangled state.
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