Hot carbon nanoparticles in plasma volume during the plasma-assisted chemical vapor deposition of diamond films
Kirillov E.A.1,2, Minakov P.V.
1, Lopaev D.V.
1, Rakhimov A.T.
1,2
1Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, Russia
2Lomonosov Moscow State University, Moscow, Russia
Email: GoGoZeppeli20@yandex.ru
In the present paper, it is shown that the appearance of continuous Planck radiation in the emission spectrum of microwave plasma, during the plasma-assisted chemical vapor deposition of diamond films, may be associated with the formation of carbon nanoparticles in its volume. According to the spectrum recorded in the near infrared wavelength range, the temperature of these particles was determined to be ~2600±100 K. The obtained result indicates the possibility of the existence of carbon nanoparticles in the plasma's hot area. Keywords: CVD diamond, plasma-assisted chemical vapor deposition, carbon nanoparticles, plasma spectroscopy.
- R.S. Balmer, J.R. Brandon, S.L. Clewes, H.K. Dhillon, J.M. Dodson, I. Friel, P.N. Inglis, T.D. Madgwick, M.L. Markham, T.P. Mollart, N. Perkins, G.A. Scarsbrook, D.J. Twitchen, A.J. Whitehead, J.J. Wilman, S.M. Woollard, J. Phys.: Condens. Matter, 21 (36), 364221 (2009). DOI: 10.1088/0953-8984/21/36/364221
- J.E. Butler, R.L. Woodin, L.M. Brown, P. Fallon, Phil. Trans. R. Soc. Lond. A, 342, 1664 (1993). DOI: 10.1098/rsta.1993.0015
- L. Vandenbulcke, P. Bou, G. Moreau, J. Electrochem. Soc., 138 (10), 2985 (1991). DOI: 10.1149/1.2085353
- F. Silva, K. Hassouni, X. Bonnin, A. Gicquel, J. Phys.: Condens. Matter, 21 (36), 364202 (2009). DOI: 10.1088/0953-8984/21/36/364202
- A. Gicquel, F. Silva, C. Rond, N. Derkaoui, O. Brinza, J. Achard, G. Lombardi, A. Tallaire, A. Michau, M. Wartel, K. Hassouni, Compr. Hard Mater., 3, 217 (2014). DOI: 10.1016/B978-0-08-096527-7.00047-7
- M.A. Elliott, P.W. May, J. Petherbridge, S.M. Leeds, M.N.R. Ashfold, W.N. Wang, Diam. Rel. Mater., 9 (3-6), 311 (2000). DOI: 10.1016/S0925-9635(99)00196-X
- J. Ma, M.N.R. Ashfold, Y.A. Mankelevich, J. Appl. Phys., 105 (4), 043302 (2009). DOI: 10.1063/1.3078032
- Y. Abe, F. Tappero, Y. Tanaka, Y. Takagi, G. Maizza, Microgr. Sci. Technol., 18 (3-4), 178 (2006). DOI: 10.1007/BF02870405
- K. W. Hemawan, R. J. Hemley, J. Vac. Sci. Technol., 33 (6), 061302 (2015). DOI: 10.1116/1.4928031
- F. Zhang, Y. Zhang, Y. Yang, G. Chen, X. Jiang, Appl. Phys. Lett., 57 (14), 1467 (1990). DOI: 10.1063/1.103368
- K. Yao, B. Dai, V. Ralchenko, G. Shu, J. Zhao, K. Liu, Z. Yang, L. Yang, J. Han, J. Zhu, Diam. Rel. Mater., 82, 33 (2018). DOI: 10.1016/j.diamond.2017.12.020
- M. Frenklach, R. Kematick, D. Huang, W. Howard, K.E. Spear, A.W. Phelps, R. Koba, J. Appl. Phys., 66 (1), 395 (1989). DOI: 10.1063/1.343890
- J.-D. Jeon, C.J. Park, D.-Y. Kim, N.M. Hwang, J. Cryst. Growth, 213 (1-2), 79 (2000). DOI: 10.1016/S0022-0248(00)00358-4
- K. Hassouni, F. Mohasseb, F. Benedic, G. Lombardi, A. Gicquel, Pure Appl. Chem., 78 (6), 1127 (2006). DOI: 10.1351/pac200678061127
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.