Generation of microwave pulses by zero-bias monolithic triple-junction AlGaAs/GaAs p-i-n photoconverters and modules
Kalinovskii V.S.1, Kontrosh E.V.1, Tolkachev I.A.1, Prudchenko K.K.1, Yuferev V.S.1, Ivanov S.V.1
1Ioffe Institute, St. Petersburg, Russia
Email: vitak.sopt@mail.ioffe.ru

PDF
The possibility of microwave pulses generation in the photovoltaic mode by monolithic triple-junction AlGaAs/GaAs photoconverters of laser radiation grown by molecular beam epitaxy has been demonstrated. In monolithic triple-junction p-i-n AlGaAs/GaAs photoconverters, a significant increase in output peak pulse power and fast performance in the subnanosecond range has been achieved compared to single-junction p-i-n photoconverters. When pulsed laser radiation at a wavelength of 850 nm with a peak power of <5 W and full width at half maximum (FWHM) of tau0.5=140 ps was injected from the optical fiber, photoresponse pulses with amplitude Umax=2.7 V, peak power Ppeak=21.6 dBm, and tau0.5≤750 ps were obtained. A module of two series-connected photoconverters provided output pulses with an amplitude of Umax=3.4 V, power Ppeak=23.7 dBm and tau0.5≤420 ps. It is shown that the module of four monolithic triple-junction photoconverters is capable of forming a bipolar microwave pulse with parameters Umax=6.4 V, Ppeak=29.1 dBm, tau0.5≤1 ns, bandwidth up to 1.4 GHz and the main carrier frequency of ~ 0.8 GHz. The numerical modeling showed a fairly good agreement between the measured and calculated photoresponse pulses shapes of photoconverters. Keywords: monolithic triple-junction photoconverter, p-i-n AlGaAs/GaAs photoconverter, microwave pulse generation, molecular beam epitaxy, pulsed laser radiation, full width at half maximum, optical fiber, peak power
  1. D.F. Zaitsev, V.M. Andreev, I.A. Bilenko, A.A. Berezovskii, P.Yu. Vladislavskii, Yu.B. Gurfinkel', L.I. Tsvetkova, V.S. Kalinovskii, N.M. Kondrat'ev, V.N. Kosolobov, V.F. Kurochkin, S.O. Slipchenko, N.V. Smirnov, B.V. Yakovlev, Radiotekhnika, 85 (4), 153 (2021) (in Russian). DOI: 10.18127/j00338486-202104-17
  2. A. Rawat, M. Saif Islam, Proc. SPIE, 12880, 128800Q (2024). DOI: 10.1117/12.3003413
  3. T. Long, Z. Xie, L. Li, L. Wang, X. Zou, H. Ji, J. Lu, B. Chen, J. Lightwave Technol., 42, 2042 (2024). DOI: 10.1109/JLT.2023.3328899
  4. D. Maes, S. Lemey, G. Roelkens, M. Zaknoune, V. Avramovic, E. Okada, P. Szriftgiser, E. Peytavit, G. Ducournau, B. Kuyken, APL Photon., 8, 016104 (2023). DOI: 10.1063/5.0119244
  5. Z. Xie, Z. Zhou, L. Li, Z. Deng, H. Ji, B. Chen, IEEE J. Sel.. Top. Quantum Electron., 28, 3801007 (2022). DOI: 10.1109/JSTQE.2021.3095470
  6. Y. Peng, K. Sun, Y. Shen, A. Beling, J. C. Campbell, Opt. Express, 28 (19), 28563 (2020). DOI: 10.1364/OE.399102
  7. Atlas User's Manual Device Simulation Software (Silvaco, 2015)
  8. V.S. Kalinovskiy, E.V. Kontrosh, G.A. Gusev, A.N. Sumarokov, G.V. Klimko, S.V. Ivanov, V.S. Yuferev, T.S. Tabarov, V.M. Andreev, J. Phys.: Conf. Ser., 993, 012029 (2018). DOI: 10.1088/1742-6596/993/1/01202
  9. I.A. Tolkachev, E.V. Kontrosh, V.S. Kalinovsky, K.K. Prudchenko, G.V. Klimko, in Proc. of 2024 Systems of signal synchronization, generating and processing in telecommunications (SYNCHROINFO) (IEEE, 2024), p. 1-4. DOI: 10.1109/SYNCHROINFO61835.2024.10617448
  10. V.S. Kalinovsky, E.V. Kontrosh, V.M. Andreev, A.V. Shamray, V.V. Lebedev, P.M. Arguzov, patent RU2789005C1 (2023)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru