Generation of microwave pulses by zero-bias monolithic triple-junction AlGaAs/GaAs p-i-n photoconverters and modules
Kalinovskii V.S.1, Kontrosh E.V.1, Tolkachev I.A.1, Prudchenko K.K.1, Yuferev V.S.1, Ivanov S.V.1
1Ioffe Institute, St. Petersburg, Russia
Email: vitak.sopt@mail.ioffe.ru
The possibility of microwave pulses generation in the photovoltaic mode by monolithic triple-junction AlGaAs/GaAs photoconverters of laser radiation grown by molecular beam epitaxy has been demonstrated. In monolithic triple-junction p-i-n AlGaAs/GaAs photoconverters, a significant increase in output peak pulse power and fast performance in the subnanosecond range has been achieved compared to single-junction p-i-n photoconverters. When pulsed laser radiation at a wavelength of 850 nm with a peak power of <5 W and full width at half maximum (FWHM) of tau0.5=140 ps was injected from the optical fiber, photoresponse pulses with amplitude Umax=2.7 V, peak power Ppeak=21.6 dBm, and tau0.5≤750 ps were obtained. A module of two series-connected photoconverters provided output pulses with an amplitude of Umax=3.4 V, power Ppeak=23.7 dBm and tau0.5≤420 ps. It is shown that the module of four monolithic triple-junction photoconverters is capable of forming a bipolar microwave pulse with parameters Umax=6.4 V, Ppeak=29.1 dBm, tau0.5≤1 ns, bandwidth up to 1.4 GHz and the main carrier frequency of ~ 0.8 GHz. The numerical modeling showed a fairly good agreement between the measured and calculated photoresponse pulses shapes of photoconverters. Keywords: monolithic triple-junction photoconverter, p-i-n AlGaAs/GaAs photoconverter, microwave pulse generation, molecular beam epitaxy, pulsed laser radiation, full width at half maximum, optical fiber, peak power
- D.F. Zaitsev, V.M. Andreev, I.A. Bilenko, A.A. Berezovskii, P.Yu. Vladislavskii, Yu.B. Gurfinkel', L.I. Tsvetkova, V.S. Kalinovskii, N.M. Kondrat'ev, V.N. Kosolobov, V.F. Kurochkin, S.O. Slipchenko, N.V. Smirnov, B.V. Yakovlev, Radiotekhnika, 85 (4), 153 (2021) (in Russian). DOI: 10.18127/j00338486-202104-17
- A. Rawat, M. Saif Islam, Proc. SPIE, 12880, 128800Q (2024). DOI: 10.1117/12.3003413
- T. Long, Z. Xie, L. Li, L. Wang, X. Zou, H. Ji, J. Lu, B. Chen, J. Lightwave Technol., 42, 2042 (2024). DOI: 10.1109/JLT.2023.3328899
- D. Maes, S. Lemey, G. Roelkens, M. Zaknoune, V. Avramovic, E. Okada, P. Szriftgiser, E. Peytavit, G. Ducournau, B. Kuyken, APL Photon., 8, 016104 (2023). DOI: 10.1063/5.0119244
- Z. Xie, Z. Zhou, L. Li, Z. Deng, H. Ji, B. Chen, IEEE J. Sel.. Top. Quantum Electron., 28, 3801007 (2022). DOI: 10.1109/JSTQE.2021.3095470
- Y. Peng, K. Sun, Y. Shen, A. Beling, J. C. Campbell, Opt. Express, 28 (19), 28563 (2020). DOI: 10.1364/OE.399102
- Atlas User's Manual Device Simulation Software (Silvaco, 2015)
- V.S. Kalinovskiy, E.V. Kontrosh, G.A. Gusev, A.N. Sumarokov, G.V. Klimko, S.V. Ivanov, V.S. Yuferev, T.S. Tabarov, V.M. Andreev, J. Phys.: Conf. Ser., 993, 012029 (2018). DOI: 10.1088/1742-6596/993/1/01202
- I.A. Tolkachev, E.V. Kontrosh, V.S. Kalinovsky, K.K. Prudchenko, G.V. Klimko, in Proc. of 2024 Systems of signal synchronization, generating and processing in telecommunications (SYNCHROINFO) (IEEE, 2024), p. 1-4. DOI: 10.1109/SYNCHROINFO61835.2024.10617448
- V.S. Kalinovsky, E.V. Kontrosh, V.M. Andreev, A.V. Shamray, V.V. Lebedev, P.M. Arguzov, patent RU2789005C1 (2023)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.