The QQ-branch spectrum of isotropic raman scattering in pure nitrogen: modeling within the framework of classical impact theory at various temperatures and pressures
Ivanov S. V. 1
1Shubnikov Institute of Crystallography “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, Russia
Email: serg.ivanov.home@mail.ru

PDF
The complete relaxation matrix N2 was obtained by the method of classical trajectories at eight temperatures in the range from 77 to 2400 K. The calculations used the potential energy surface of the intermolecular interaction N_2-N2 of high accuracy. The obtained results are applied to calculate the spectra of the Q-branch of isotropic Raman scattering of N2 at pressures of 1, 5 and 10 atm using the efficient Gordon and McGinnis algorithm. The transformation of the Q-branch spectrum under temperature and pressure changes has been quantitatively traced, as well as the difference between the exact spectrum and the sum of isolated Lorentz lines when the interference effect is not taken into account. The calculated spectra are compared with the results of the EGL approximation model reproducing the experimental data. Keywords: collision line-interference, classical impact theory, classical trajectory method, isotropic Raman scattering, molecular nitrogen, various temperatures and pressures.
  1. J.-M. Hartmann, C. Boulet, D. Robert. Collisional effects on molecular spectra: laboratory experiments and models, consequences for applications (Elsevier Science, Amsterdam, 2008)
  2. P.W. Rosenkranz. IEEE Trans. Antennas Propag., 23, 498-506 (1975). DOI: 10.1109/TAP.1975.1141119
  3. T.A. Brunner, D. Pritchard. Fitting laws for rotationally inelastic collisions. In: Dynamics of the Excited State. Ed. K.P. Lawley (Wiley, NY., 1982), p. 589
  4. A.I. Burshtein, S.I. Temkin. Spectroscopy of Molecular Rotation in Gases and Liquids (Cambridge University Press, 1994)
  5. N.N. Filippov, M.V. Tonkov. J. Quant. Spectrosc. Radiat. Transf., 50, 111-125 (1993). DOI: 10.1016/0022-4073(93)90134-4
  6. N.N. Filippov, M.V. Tonkov. Spectrochim. Acta, A(8), 901-918 (1996). DOI: 10.1016/0584-8539(96)01669-8
  7. N.N. Filippov, M.V. Tonkov. J.-P. Bouanich. Infrared Phys. Technol., 35 (7), 897-903 (1994). DOI: 10.1016/1350-4495(94)90056-6
  8. M.V. Tonkov, N.N. Filippov, Yu.M. Timofeev, A.V. Polyakov. J. Quant. Spectrosc. Radiat. Transf., 56 (5), 783-795 (1996). DOI: 10.1016/S0022-4073(96)00113-6
  9. M.L. Koszykovski, R.L. Farrow, R.E. Palmer. Opt. Lett., 10 (10), 478-480 (1985). DOI: 10.1364/ol.10.000478
  10. B. Lavorel, G. Millot, J. Bonamy, D. Robert. Chem. Phys., 115 (1), 69-78 (1987). DOI: 10.1016/0301-0104(87)80179-9
  11. R.G. Gordon. J. Chem. Phys., 44 (8), 3083-3089 (1966). DOI: 10.1063/1.1727183
  12. R.G. Gordon. J. Chem. Phys., 45 (5), 1649-1655 (1966). DOI: 10.106 3/1.1727808
  13. R.G. Gordon, R.P. McGinnis. J. Chem. Phys., 49 (5), 2455-2456 (1968). DOI: 10.1063/1.1670429
  14. R.G. Gordon, R.P. McGinnis. J. Chem. Phys., 55 (10), 4898-4906 (1971). DOI: 10.1063/1.1675597
  15. F. Thibault, L. Gomez, S.V. Ivanov, O.G. Buzykin, C. Boulet. J. Quant. Spectrosc. Radiat. Transf., 113, 1887-1897 (2012). DOI: 10.1016/j.jqsrt.2012.06.003
  16. B. Lavorel, L. Guillot, J. Bonamy, D. Robert. Opt. Lett., 20 (10), 1189-1191 (1995). DOI: 10.1364/ol.20.001189
  17. S.V. Ivanov, O.G. Buzykin. Mol. Phys., 106, 1291-1302 (2008). DOI: 10.1080/00268970802270034
  18. F. Thibault, C. Boulet, Q. Ma. J. Chem. Phys., 140, 044303, 1-6 (2014). DOI: 10.1063/1.4862082
  19. C. Boulet, Q. Ma, F. Thibault. J. Chem. Phys., 140, 084310, 1-8 (2014). DOI: 10.1063/1.4865967
  20. Q. Ma, C. Boulet, R.H. Tipping. J. Chem. Phys., 139 (3), 034305 (2013). DOI: 10.1063/1.4813234
  21. S.V. Ivanov, C. Boulet, O.G. Buzykin, F. Thibault. J. Chem. Phys., 141, 184306, 1-10 (2014). DOI: 10.1063/1.4901084
  22. L. Gomez, B. Bussery-Honvault, T. Cauchy, M. Bartolomei, D. Cappelletti, F. Pirani. Chem. Phys. Lett., 445 (4-6), 99 (2007). DOI: 10.1016/j.cplett.2007.07.053
  23. D. Cappelletti, F. Pirani, B. Bussery-Honvault, L. Gomez, M. Bartolomei. Phys. Chem. Chem. Phys., 10, 4281-4293 (2008). DOI: 10.1039/b803961e
  24. G. Goldstein. Classical Mechanics (GITTLE, M., 1957) (in Russian)
  25. C.W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations (Englewood Cliffs, Prentice-Hall, N.J., 1971)
  26. K.P. Huber, G. Herzberg. Molecular Spectra and Molecular Structure. IV. Constant of Diatomic Molecules. Van Nostrand Reinhold Company. NY., etc. 1979
  27. J. Bendtsen. J. Raman. Spectrosc., 2, 133-145 (1974). http://jupiter.chem.uoa.gr.thanost/papers/papers4/
  28. R.E. Langer. Phys. Rev., 51, 669-676 (1937). DOI: 10.1103/PhysRev.51.669
  29. S. Chapman, S. Green. J. Chem. Phys., 67 (5), 2317-2331 (1977). DOI: 10.1063/1.435067
  30. Raman Spectroscopy of Gases and Liquids. Ed. by A. Weber. Topics in current physics. Founded by Helmut K.V. Lotsch. V. 11. (Springer-Verlag., Berlin, Heidelberg, NY., 1979)
  31. Fizicheskie velichiny. Spravochnik. Ed. by I.S. Grigor'ev, E.Z. Meilikhov (Energoatomizdat, M., 1991) (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru