Experimental and theoretical studies of the ion-pair and valence states of the NeICl van der Waals complexes
Martynov I. I.
1, Poretsky S.A.
1, Pravilov A. A.
1, Sivokhina M. M.
11St. Petersburg State University, St. Petersburg, Russia
Email: kotofeimorofei@gmail.com, a.pravilov@spbu.ru, m.sivokhina@spbu.ru
Experimental and theoretical studies of the T-shaped NeICl van der Waals (vdW) complexes in the ion-pair (IP) E0+, D'2, β 1 and valence A1 states as well as the NeICl(A1, vA, nA≤ftarrow X0+, vX=0, nX and β1, vβ, nβ/E0+, vE, nE ≤ftarrow A1, vA, nA) optical transitions have been carried out (ni are vdW modes). We have measured NeICl(IP, vIP=0 ,nIP -> valence states) luminescence spectra and their excitation spectra. Binding energies of the states have been determined. The NeICl(IP, vIP=1, nIP)-> Ne + ICl(E,D',β) decay has been also studied. The intermolecular diatomic-in-molecule perturbation theory first order (IDIM PT1) method have been utilized to construct potential energy surfaces (PESs) for the complex valence, and IP states. Calculated spectroscopic characteristics of the NeICl E, β and valence states are similar to experimental ones. We calculated energies of the vdW mode and the action NeICl(A, vA, nA≤ftarrow X0+, vX=0, nx) as well as excitation NeICl(E, vE=0, nE≤ftarrow A, 13, nA), NeICl(β, vβ=0, nβ≤ftarrow A, 13, nA) spectra. Calculated excitation and action spectra describe the principal features of experimental spectra. We achieved satisfactory descriptions of the NeICl(E, 0 -> X), NeICl(D', 0-> A') and NeICl(β, 0-> A) luminescence spectra using Heidelberg MCTDH method, also. Keywords:
- S. Lukashov, A. Petrov, A. Pravilov. The Iodine Molecule: Insights into Intra- and Intermolecular Perturbation in Diatomic Molecules (Springer, 2018). DOI: 10.1007/978-3-319-70072-4
- A. Pravilov. Gas-Phase Photoprocesses (Springer, 2021). DOI: 10.1007/978-3-030-65570-9
- R. Prosmiti, C. Cunha, P. Villarreal, G. Delgado-Barrio. J. Chem. Phys. 117 (15), 7017 (2002). DOI: 10.1063/1.1506920
- A. Durand, J.C. Loison, J. Vigue. J. Chem. Phys. 106 (2), 477 (1997). DOI: 10.1063/1.474086
- O. Roncero, J.A. Beswick, N. Halberstadt, P. Villareal, G. Delgado-Barrio. J. Chem. Phys. 92 (6) 3348 (1990). DOI: 10.1063/1.458578
- J.M. Skene, J.C. Drobits, M.I. Lester. J. Chem. Phys. 85 (4), 2329-2331 (1986). DOI: 10.1063/1.451080
- A.B. McCoy, J.P. Darr, D.S. Boucher, P.R. Winter, M.D. Bradke, R.A. Loomis. J. Chem. Phys. 120 (6) 2677 (2004). DOI: 10.1063/1.1636693
- D.B. Strasfeld, J.P. Darr, R.A. Loomis. Chem. Phys. Letts. 397 (1) 116 (2004). DOI: :10.1016/j.cplett.2004.08.083
- T.A. Stephenson. J. Chem. Phys. 97 (9) 6262 (1992). DOI: 10.1063/1.463688
- T.A. Stephenson, Y. Hong, M.I. Lester. J. Chem. Phys. 94 (6) 4171 (1991)
- J.P. Darr, R.A. Loomis. J. Chem. Phys. 129 (14), 144306 (2008). DOI: 10.1063/1.2990661
- J.C. Drobits, M.I. Lester. J. Chem. Phys. 86 (4) 1662 (1987). DOI: 10.1063/1.452164
- V.V. Baturo, S.S. Lukashov, S.A. Poretsky, A.M. Pravilov, M.M. Sivokhina. Chem. Phys. Letts. 765 (1) 138259 (2021). DOI: 10.1016/j.cplett.2020.138259
- S.A. Poretsky, A.M. Pravilov. Mol. Phys. 120, e1955166 (2021), DOI: 10.1080/00268976.2021.1955166
- S.S. Lukashov, I.I. Martynov, S.A. Poretsky, A.M. Pravilov, M.M. Sivokhina. J. Chem. Phys. 157 (16) 164302 (2022). DOI: 10.1063/5.0109849
- V.V. Baturo, S.S. Lukashov, S.A. Poretsky, A.M. Pravilov. Chem. Phys. Letts. 696 (1), 26 (2018). DOI: 10.1016/j.cplett.2018.02.031
- A.A. Buchachenko, N. Halberstadt, B. Lepetit, O. Roncero. Int. Rev. Phys. Chem. 22 (1) 153 (2003). DOI: 10.1080/0144235031000075726
- V.V. Baturo, I.N. Cherepanov, S.S. Lukashov, S.A. Poretsky, A.M. Pravilov. Chem. Phys. Letts. 647, 161-164 (2016). DOI: 10.1016/j.cplett.2016.01.053
- V.V. Baturo, S.S. Lukashov, S.A. Poretsky, A.M. Pravilov, A.I. Zhironkin. Chem. Phys. Letts. 662 (1) 250 (2016). DOI: 10.1016/j.cplett.2016.09.021
- V.V. Baturo, R. Kevorkyants, S.S. Lukashov, S.A. Poretsky, A.M. Pravilov, A.I. Zhironkin. Chem. Phys. Letts. 684 (1) 357 (2017). DOI: 10.1016/j.cplett.2017.07.007
- V.V. Baturo, S.S. Lukashov, S.A. Poretsky, A.M. Pravilov. Eur. Phys. J. D 71, 217 (2017). DOI: 10.1140/epjd/e2017-80142-6
- V.V. Baturo, R. Kevorkyants, S.S. Lukashov, S.S. Onishchenko, S.A. Poretsky, A.M. Pravilov. Chem. Phys. Letts. 714 (1) 213 (2019). DOI: 10.1016/j.cplett.2018.10.084
- V.V. Baturo, S.S. Lukashov, S.A. Poretsky, A.M. Pravilov. J. Phys. B: At. Mol. Opt. Phys. 52, 145101 (2019). DOI: 10.1088/1361-6455%2Fab2496
- V.V. Baturo, S.S. Lukashov, S.A. Poretsky, A.M. Pravilov, A.I. Zhironkin. J. Phys. B: At. Mol. Opt. Phys. 53, 035101 (2020). DOI: 10.1088/1361-6455/ab582b
- A.S. Andreev, V.V. Baturo, S.S. Lukashov, S.A. Poretsky, A.M. Pravilov, A.I. Zhironkin. J. Chem. Phys. 152 (23) 234307 (2020). DOI: 10.1063/5.0008760
- S.S. Lukashov, I.I. Martynov, S.A. Poretsky, A.M. Pravilov, M.M. Sivokhina. ChemPhysChem 24, e202300274 (2023). DOI: 10.1002/cphc.202300274
- A.M. Pravilov. Radiometry in Modern Scientific Experiments (Springer, Wien New-York, 2011). DOI: 10.1007/978-3-7091-0104-9
- M.E. Akopyan, V.V. Baturo, S.S. Lukashov, S.A. Poretsky, A.M. Pravilov. J. Phys. B. Atom. Molec. and Optic. Phys. 44, 205101 (2011). DOI: 10.1088/0953-4075/44/20/205101
- M.E. Akopyan, V.V. Baturo, S.S. Lukashov, S.A. Poretsky, A.M. Pravilov. Chem. Phys. 462, 3 (2015). DOI: 10.1016/j.chemphys.2015.08.014
- J.A. Coxon, M.A. Wickramaaratchi. J. Molec. Spectrosc. 79 (2) 380 (1980). DOI: 10.1016/0022-2852(80)90220-9
- H.G. Hedderich, P.F. Bernath, G.A. McRae. J. Molec. Spectrosc. 155 (2), 384 (1992). DOI: 10.1016/0022-2852(92)90527-U
- J.C.D. Brand, A.R. Hoy, S.M. Jawant. J. Molec. Spectrosc. 106 (2) 388 (1984). DOI: 10.1016/0022-2852(84)90169-3
- R.J. Donovan, T. Ridley, K.P. Lawley, P.J. Wilson, Chem. Phys. Letts. 205 (3, 4) 129 (1993). DOI: 10.1016/0009-2614(93)89216-5
- J.C.D. Brand, D. Bussieres, A.R. Hoy, S.M. Jawant, D.B. Miller, Opt. Comm. 48, 195 (1983). DOI: 10.1016/0030-4018(83)90084-6
- D. Bussieres, A.R. Hoy. Can. J. Phys. 62 (12) 1941 (1984). DOI: 10.1139/p84-237
- B.L. Grigorenko, A.V. Nemukhin, A.A. Buchachenko, N.F. Stepanov, S.Y. Umanskii. J. Chem. Phys. 106 (11), 4575 (1997). DOI: 10.1063/1.473499
- B. Schmidt and U. Lorenz. Comput. Phys. Commun. 213, 223 (2017). DOI: 10.1016/j.cpc.2016.12.007
- K.C. Janda, C.R. Bieler, in Atomic and Molecular Clusters, ed. by I.R. Bernstein (Elsevier, Amsterdam), 455 (1990)
- J.I. Cline, N. Sivakumar, D.D. Evard, C.R. Bieler, B.P. Reid, N. Halberstadt, S.R. Hair, K.C. Janda. J. Chem. Phys. 90 (5), 2605(1989). DOI: 10.1063/1.456669
- J.C. Drobits, M.I. Lester. J. Chem. Phys. 88 (1), 120 (1988). DOI: 10.1063/1.454644
- J.C. Drobits, M.I. Lester. J. Chem. Phys. 89 (8), 4716 (1988), DOI: 10.1063/1.455735
- C.D. Withers, T.G. Wright, L.A. Viehland, L. Grossman, C.C. Kirkpatrick, E.P.F. Lee. J. Chem. Phys. 135 (2) 024312 (2011). DOI: 10.1063/1.3598472
- I. Last, T.F. George. J. Chem. Phys. 87 (2), 1183 (1987). DOI: 10.1063/1.453298
- A.A. Buchachenko, T.V. Tscherbul, J. K os, M.M. Szczesniak, G. Cha asinski, R. Webb, L.A. Viehland. J. Chem. Phys. 122 (19), 194311 (2005). DOI: 10.1063/1.1900085
- S.A. Poretsky, A.M. Pravilov, M.M. Sivokhina, Chem. Phys. Letts. 829, 140753 (2023). DOI: 10.1016/j.cplett.2023.140753
- M.D. Havey, J.J. Wright. J. Chem. Phys. 68 (10), 4754 (1968). DOI: 10.1063/1.435543
- J.P. Darr, R.A. Loomis, Faraday Disc. 127, 213 (2004). DOI: 10.1039/B316117J
- D.S. Boucher, M.D. Bradke, J.P. Darr, R.A. Loomis, J. Phys. Chem. A, 107 (36), 6901 (2003). DOI: 10.1021/jp035284z
- H.D. Meyer, U. Manthe, and L.S. Cederbaum, Chem. Phys. Lett. 165 (1), 73 (1990). DOI: 10.1016/0009-2614(90)87014-I
- M.H. Beck, A. Jackle, G.A. Worth, H.D. Meyer, Phys. Rep. 324 (1), 1 (2000). DOI: 10.1016/S0370-1573(99)00047-2
- G.A. Worth, M.H. Beck, A. Jackle, H.-D. Meyer. The MCTDH Package, Version 8.2, (2000). H.-D. Meyer, Version 8.3 (2002), Version 8.4 (2007). O. Vendrell, H.-D. Meyer Version 8.5 (2013). Versions 8.5 and 8.6 contain the ML MCTDH algorithm. See http://mctdh.uni-hd.de for a description of the Heidelberg MCTDH package.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.