Experimental and theoretical studies of the ion-pair and valence states of the NeICl van der Waals complexes
Martynov I. I.1, Poretsky S.A. 1, Pravilov A. A. 1, Sivokhina M. M. 1
1St. Petersburg State University, St. Petersburg, Russia
Email: kotofeimorofei@gmail.com, a.pravilov@spbu.ru, m.sivokhina@spbu.ru

PDF
Experimental and theoretical studies of the T-shaped NeICl van der Waals (vdW) complexes in the ion-pair (IP) E0+, D'2, β 1 and valence A1 states as well as the NeICl(A1, vA, nA≤ftarrow X0+, vX=0, nX and β1, vβ, nβ/E0+, vE, nE ≤ftarrow A1, vA, nA) optical transitions have been carried out (ni are vdW modes). We have measured NeICl(IP, vIP=0 ,nIP -> valence states) luminescence spectra and their excitation spectra. Binding energies of the states have been determined. The NeICl(IP, vIP=1, nIP)-> Ne + ICl(E,D',β) decay has been also studied. The intermolecular diatomic-in-molecule perturbation theory first order (IDIM PT1) method have been utilized to construct potential energy surfaces (PESs) for the complex valence, and IP states. Calculated spectroscopic characteristics of the NeICl E, β and valence states are similar to experimental ones. We calculated energies of the vdW mode and the action NeICl(A, vA, nA≤ftarrow X0+, vX=0, nx) as well as excitation NeICl(E, vE=0, nE≤ftarrow A, 13, nA), NeICl(β, vβ=0, nβ≤ftarrow A, 13, nA) spectra. Calculated excitation and action spectra describe the principal features of experimental spectra. We achieved satisfactory descriptions of the NeICl(E, 0 -> X), NeICl(D', 0-> A') and NeICl(β, 0-> A) luminescence spectra using Heidelberg MCTDH method, also. Keywords:
  1. S. Lukashov, A. Petrov, A. Pravilov. The Iodine Molecule: Insights into Intra- and Intermolecular Perturbation in Diatomic Molecules (Springer, 2018). DOI: 10.1007/978-3-319-70072-4
  2. A. Pravilov. Gas-Phase Photoprocesses (Springer, 2021). DOI: 10.1007/978-3-030-65570-9
  3. R. Prosmiti, C. Cunha, P. Villarreal, G. Delgado-Barrio. J. Chem. Phys. 117 (15), 7017 (2002). DOI: 10.1063/1.1506920
  4. A. Durand, J.C. Loison, J. Vigue. J. Chem. Phys. 106 (2), 477 (1997). DOI: 10.1063/1.474086
  5. O. Roncero, J.A. Beswick, N. Halberstadt, P. Villareal, G. Delgado-Barrio. J. Chem. Phys. 92 (6) 3348 (1990). DOI: 10.1063/1.458578
  6. J.M. Skene, J.C. Drobits, M.I. Lester. J. Chem. Phys. 85 (4), 2329-2331 (1986). DOI: 10.1063/1.451080
  7. A.B. McCoy, J.P. Darr, D.S. Boucher, P.R. Winter, M.D. Bradke, R.A. Loomis. J. Chem. Phys. 120 (6) 2677 (2004). DOI: 10.1063/1.1636693
  8. D.B. Strasfeld, J.P. Darr, R.A. Loomis. Chem. Phys. Letts. 397 (1) 116 (2004). DOI: :10.1016/j.cplett.2004.08.083
  9. T.A. Stephenson. J. Chem. Phys. 97 (9) 6262 (1992). DOI: 10.1063/1.463688
  10. T.A. Stephenson, Y. Hong, M.I. Lester. J. Chem. Phys. 94 (6) 4171 (1991)
  11. J.P. Darr, R.A. Loomis. J. Chem. Phys. 129 (14), 144306 (2008). DOI: 10.1063/1.2990661
  12. J.C. Drobits, M.I. Lester. J. Chem. Phys. 86 (4) 1662 (1987). DOI: 10.1063/1.452164
  13. V.V. Baturo, S.S. Lukashov, S.A. Poretsky, A.M. Pravilov, M.M. Sivokhina. Chem. Phys. Letts. 765 (1) 138259 (2021). DOI: 10.1016/j.cplett.2020.138259
  14. S.A. Poretsky, A.M. Pravilov. Mol. Phys. 120, e1955166 (2021), DOI: 10.1080/00268976.2021.1955166
  15. S.S. Lukashov, I.I. Martynov, S.A. Poretsky, A.M. Pravilov, M.M. Sivokhina. J. Chem. Phys. 157 (16) 164302 (2022). DOI: 10.1063/5.0109849
  16. V.V. Baturo, S.S. Lukashov, S.A. Poretsky, A.M. Pravilov. Chem. Phys. Letts. 696 (1), 26 (2018). DOI: 10.1016/j.cplett.2018.02.031
  17. A.A. Buchachenko, N. Halberstadt, B. Lepetit, O. Roncero. Int. Rev. Phys. Chem. 22 (1) 153 (2003). DOI: 10.1080/0144235031000075726
  18. V.V. Baturo, I.N. Cherepanov, S.S. Lukashov, S.A. Poretsky, A.M. Pravilov. Chem. Phys. Letts. 647, 161-164 (2016). DOI: 10.1016/j.cplett.2016.01.053
  19. V.V. Baturo, S.S. Lukashov, S.A. Poretsky, A.M. Pravilov, A.I. Zhironkin. Chem. Phys. Letts. 662 (1) 250 (2016). DOI: 10.1016/j.cplett.2016.09.021
  20. V.V. Baturo, R. Kevorkyants, S.S. Lukashov, S.A. Poretsky, A.M. Pravilov, A.I. Zhironkin. Chem. Phys. Letts. 684 (1) 357 (2017). DOI: 10.1016/j.cplett.2017.07.007
  21. V.V. Baturo, S.S. Lukashov, S.A. Poretsky, A.M. Pravilov. Eur. Phys. J. D 71, 217 (2017). DOI: 10.1140/epjd/e2017-80142-6
  22. V.V. Baturo, R. Kevorkyants, S.S. Lukashov, S.S. Onishchenko, S.A. Poretsky, A.M. Pravilov. Chem. Phys. Letts. 714 (1) 213 (2019). DOI: 10.1016/j.cplett.2018.10.084
  23. V.V. Baturo, S.S. Lukashov, S.A. Poretsky, A.M. Pravilov. J. Phys. B: At. Mol. Opt. Phys. 52, 145101 (2019). DOI: 10.1088/1361-6455%2Fab2496
  24. V.V. Baturo, S.S. Lukashov, S.A. Poretsky, A.M. Pravilov, A.I. Zhironkin. J. Phys. B: At. Mol. Opt. Phys. 53, 035101 (2020). DOI: 10.1088/1361-6455/ab582b
  25. A.S. Andreev, V.V. Baturo, S.S. Lukashov, S.A. Poretsky, A.M. Pravilov, A.I. Zhironkin. J. Chem. Phys. 152 (23) 234307 (2020). DOI: 10.1063/5.0008760
  26. S.S. Lukashov, I.I. Martynov, S.A. Poretsky, A.M. Pravilov, M.M. Sivokhina. ChemPhysChem 24, e202300274 (2023). DOI: 10.1002/cphc.202300274
  27. A.M. Pravilov. Radiometry in Modern Scientific Experiments (Springer, Wien New-York, 2011). DOI: 10.1007/978-3-7091-0104-9
  28. M.E. Akopyan, V.V. Baturo, S.S. Lukashov, S.A. Poretsky, A.M. Pravilov. J. Phys. B. Atom. Molec. and Optic. Phys. 44, 205101 (2011). DOI: 10.1088/0953-4075/44/20/205101
  29. M.E. Akopyan, V.V. Baturo, S.S. Lukashov, S.A. Poretsky, A.M. Pravilov. Chem. Phys. 462, 3 (2015). DOI: 10.1016/j.chemphys.2015.08.014
  30. J.A. Coxon, M.A. Wickramaaratchi. J. Molec. Spectrosc. 79 (2) 380 (1980). DOI: 10.1016/0022-2852(80)90220-9
  31. H.G. Hedderich, P.F. Bernath, G.A. McRae. J. Molec. Spectrosc. 155 (2), 384 (1992). DOI: 10.1016/0022-2852(92)90527-U
  32. J.C.D. Brand, A.R. Hoy, S.M. Jawant. J. Molec. Spectrosc. 106 (2) 388 (1984). DOI: 10.1016/0022-2852(84)90169-3
  33. R.J. Donovan, T. Ridley, K.P. Lawley, P.J. Wilson, Chem. Phys. Letts. 205 (3, 4) 129 (1993). DOI: 10.1016/0009-2614(93)89216-5
  34. J.C.D. Brand, D. Bussieres, A.R. Hoy, S.M. Jawant, D.B. Miller, Opt. Comm. 48, 195 (1983). DOI: 10.1016/0030-4018(83)90084-6
  35. D. Bussieres, A.R. Hoy. Can. J. Phys. 62 (12) 1941 (1984). DOI: 10.1139/p84-237
  36. B.L. Grigorenko, A.V. Nemukhin, A.A. Buchachenko, N.F. Stepanov, S.Y. Umanskii. J. Chem. Phys. 106 (11), 4575 (1997). DOI: 10.1063/1.473499
  37. B. Schmidt and U. Lorenz. Comput. Phys. Commun. 213, 223 (2017). DOI: 10.1016/j.cpc.2016.12.007
  38. K.C. Janda, C.R. Bieler, in Atomic and Molecular Clusters, ed. by I.R. Bernstein (Elsevier, Amsterdam), 455 (1990)
  39. J.I. Cline, N. Sivakumar, D.D. Evard, C.R. Bieler, B.P. Reid, N. Halberstadt, S.R. Hair, K.C. Janda. J. Chem. Phys. 90 (5), 2605(1989). DOI: 10.1063/1.456669
  40. J.C. Drobits, M.I. Lester. J. Chem. Phys. 88 (1), 120 (1988). DOI: 10.1063/1.454644
  41. J.C. Drobits, M.I. Lester. J. Chem. Phys. 89 (8), 4716 (1988), DOI: 10.1063/1.455735
  42. C.D. Withers, T.G. Wright, L.A. Viehland, L. Grossman, C.C. Kirkpatrick, E.P.F. Lee. J. Chem. Phys. 135 (2) 024312 (2011). DOI: 10.1063/1.3598472
  43. I. Last, T.F. George. J. Chem. Phys. 87 (2), 1183 (1987). DOI: 10.1063/1.453298
  44. A.A. Buchachenko, T.V. Tscherbul, J. K os, M.M. Szczesniak, G. Cha asinski, R. Webb, L.A. Viehland. J. Chem. Phys. 122 (19), 194311 (2005). DOI: 10.1063/1.1900085
  45. S.A. Poretsky, A.M. Pravilov, M.M. Sivokhina, Chem. Phys. Letts. 829, 140753 (2023). DOI: 10.1016/j.cplett.2023.140753
  46. M.D. Havey, J.J. Wright. J. Chem. Phys. 68 (10), 4754 (1968). DOI: 10.1063/1.435543
  47. J.P. Darr, R.A. Loomis, Faraday Disc. 127, 213 (2004). DOI: 10.1039/B316117J
  48. D.S. Boucher, M.D. Bradke, J.P. Darr, R.A. Loomis, J. Phys. Chem. A, 107 (36), 6901 (2003). DOI: 10.1021/jp035284z
  49. H.D. Meyer, U. Manthe, and L.S. Cederbaum, Chem. Phys. Lett. 165 (1), 73 (1990). DOI: 10.1016/0009-2614(90)87014-I
  50. M.H. Beck, A. Jackle, G.A. Worth, H.D. Meyer, Phys. Rep. 324 (1), 1 (2000). DOI: 10.1016/S0370-1573(99)00047-2
  51. G.A. Worth, M.H. Beck, A. Jackle, H.-D. Meyer. The MCTDH Package, Version 8.2, (2000). H.-D. Meyer, Version 8.3 (2002), Version 8.4 (2007). O. Vendrell, H.-D. Meyer Version 8.5 (2013). Versions 8.5 and 8.6 contain the ML MCTDH algorithm. See http://mctdh.uni-hd.de for a description of the Heidelberg MCTDH package.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru