Analysis of temperature-frequency dependences of dielectric permittivity and specific conductivity of vanillin
Volkov A.S. 1, Khviyuzov S.S. 2
1Lomonosov Northern (Arctic) Federal University, Arkhangelsk, Russia
2N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of Russian Academy of Sciences, Arkhangelsk, Russia
Email: a.s.volkov@narfu.ru, khviyuzov.s@yandex.ru

PDF
Vanillin has a wide application. It is a large-tonnage product obtained from plant biomass. The frequency-temperature dependences of the specific electrical conductivity and the components of the complex dielectric constant of vanillin were obtained by dielectric spectroscopy in the frequency range of 6.28·10-2-6.28·107 rad/s and temperatures 153-433 K. The dependencies were analyzed using the Debye, Gavrilyak-Negami and Cole-Cole models. Significant changes in the electrophysical properties of vanillin during melting were shown. The presence of relaxation processes in the low, medium and high frequencies region was established. Their activation energies were determined. A comparative analysis of the characteristics of relaxers for a number of model compounds of the lignin structural units was presented in this paper. A comparative analysis of the characteristics of relaxators for vanillin, vanillin alcohol and guaiacol as model compounds of the lignin was carried out. The presence of an electron acceptor carbonyl group coupled with a benzene ring in the vanillin molecule leads to an increase in the activation energy and relaxation time of the π-electrons. Keywords: vanillin, dielectric permittivity, relaxators, activation energy.
  1. A.N. Lachinov, N.V. Vorob'eva. Phys. Usp., 49 (12), 1223 (2006). DOI: 10.3367/UFNr.0176.200612a.1249
  2. E.I. Evstigneyev, D.N. Zakusilo, D.S. Ryabukhin, A.V.Vasilyev. Russ. Chem. Rev., 92(8), RCR5082 (2023). DOI: 10.59761/RCR5082
  3. M.B. Hocking. J. Chem. Educ., 74 (9), 1055 (1997). DOI: 10.1021/ed074p1055
  4. A. Llevot, E. Grau, S. Carlotti, S. Grelier, H. Cramail. Macromol. Rapid Commun., 37, 9 (2016). DOI: 10.1002/marc.201500474
  5. L. Fakhra, X. Lingxia, I.K. Mahammed, A. Shehbaz, U.R. Mujeeb, Z. Daochen. Ind. Crops Prod., 204 (B), 117372 (2023). DOI: 10.1016/j.indcrop.2023.117372
  6. L. Fang, Y. Tao, J. Zhou, C. Wang, M. Dai, J. Sun, Q. Fang. Polym. Chem., 12 (5), 766 (2021). DOI: 10.1039/D0PY01653E
  7. D. Menglu, T. Yangqing, F. Linxuan, W. Caiyun, S. Jing, F. Qiang. ACS Sustainable Chem. Eng., 8 (39), 15013 (2020). DOI: 10.1021/acssuschemeng.0c05503
  8. K.G. Bogolitsyn, S.S. Khviuzov, M.A. Gusakova, M.A. Pustynnaya, A.A. Krasikova. Wood Sci. Technol., 52 (4), 1153 (2018). DOI: 10.1007/s00226-018-1008-z
  9. M.P. Tonkonogov. Phys. Usp., 41, 25 (1998). DOI: 10.1070/pu1998v041n01 abeh000328
  10. A.K. Jonscher. J. Phys. D, 32, 57 (1999). DOI 10.1088/0022-3727/32/14/201
  11. A. Chantal, T. Brotin, C. Garcia, F. Pelle, P. Goldner, B. Bigot, A. Collet. J. Am. Chem. Soc., 116 (5), 2094 (1994). DOI: 10.1021/ja00084a055
  12. S.K.K. Jatkar, C.M. Deshpande. J. Ind. Chem. Soc., 37, 1 (1960). DOI: 10.5281/zenodo.6531708
  13. T. Blythe, D. Bloor. Electrical Properties of Polymers (Cambridge, CUP, 2005)
  14. F. Kremer. J. Non-Crystalline Solids, 305 (1-3), 1 (2002). DOI: 10.1016/S0022-3093(02)01083-9
  15. G.D. Koposov, A.V. Tyagunin. Fizika passivnykh dielektrikov (SAFU, Arhangel'sk, 2013) (in Russian)
  16. V.L. Bonch-Bruevich, S.G. Kalashnikov, Fizika poluprovodnikov (Nauka, M., 1977) (in Russian)
  17. I.P. Zvyagin. Kineticheskie yavleniya v neuporyadochennykh poluprovodnikakh. (MGU, M., 1984). (in Russian)
  18. S. Havriliak, S. Negami. J. Polym. Sci. C, 14, 99 (1966). DOI: 10.1002/polc.5070140111
  19. K.S. Cole, R.H. Cole. J. Chem. Phys., 9, 341 (1941). DOI: 10.1063/1.1750906
  20. D.W. Devidson, R.H. Cole. J. Chem. Phys., 19, 1484 (1951). DOI: 10.1063/1.1748105
  21. P. Debye. Polar Molecules: Wisconsin Lectures (Chemical, Catalog Co., N.Y.,1929)
  22. A.S. Volkov, G.D. Koposov, R.O. Perfil'ev, A.V. Tyagunin. Opt. Spectrosc., 124 (2), 202 (2018). DOI: 10.1134/S0030400X18020200
  23. A.S. Volkov, G.D. Koposov, R.O. Perfil'ev. Opt. Spectrosc., 125 (3), 379 (2018). DOI: 10.1134/S0030400X18090242
  24. B.A. Belyaev, N.A. Drokin, V.F. Shabanov. Phys. Solid State, 48 (5), 973 (2006). DOI: 10.1134/S106378340605026X
  25. S. Khviyuzov, K. Bogolitsyn, A. Volkov, G. Koposov, M. Gusakova. Holzforschung, 74 (12), 1113 (2020). DOI: 10.1515/hf-2019-0149
  26. K.G. Bogolitsyn, S.S. Khviyuzov. Pol. Bull., 80 (1), 1001 (2023). DOI: 10.1007/s00289-022-04323-x
  27. K.G. Bogolitsyn, S.S. Khviyuzov, A.S. Volkov, G. D. Koposov, M.A.Gusakova. Russ. J. Phys. Chem. A, 93, 353 (2019). DOI: 10.1134/s0036024419020055
  28. A.S. Volkov, G.D. Koposov, S.S. Khviyuzov. Chem. Phys., 548, 111202 (2021). DOI: 10.1016/j.chemphys.2021.111202
  29. A.S. Volkov, S.S. Khviyuzov. J. Appl. Spectrosc., 90 (6), 1259 (2023). DOI: 10.1007/s10812-024-01662-7
  30. S.S. Khviyuzov, A.S. Volkov. Polym. Adv. Tecnol., 35 (6), e6467 (2024). DOI:10.1002/pat.6467

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru