Analysis of temperature-frequency dependences of dielectric permittivity and specific conductivity of vanillin
Volkov A.S.
1, Khviyuzov S.S.
21Lomonosov Northern (Arctic) Federal University, Arkhangelsk, Russia
2N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of Russian Academy of Sciences, Arkhangelsk, Russia
Email: a.s.volkov@narfu.ru, khviyuzov.s@yandex.ru
Vanillin has a wide application. It is a large-tonnage product obtained from plant biomass. The frequency-temperature dependences of the specific electrical conductivity and the components of the complex dielectric constant of vanillin were obtained by dielectric spectroscopy in the frequency range of 6.28·10-2-6.28·107 rad/s and temperatures 153-433 K. The dependencies were analyzed using the Debye, Gavrilyak-Negami and Cole-Cole models. Significant changes in the electrophysical properties of vanillin during melting were shown. The presence of relaxation processes in the low, medium and high frequencies region was established. Their activation energies were determined. A comparative analysis of the characteristics of relaxers for a number of model compounds of the lignin structural units was presented in this paper. A comparative analysis of the characteristics of relaxators for vanillin, vanillin alcohol and guaiacol as model compounds of the lignin was carried out. The presence of an electron acceptor carbonyl group coupled with a benzene ring in the vanillin molecule leads to an increase in the activation energy and relaxation time of the π-electrons. Keywords: vanillin, dielectric permittivity, relaxators, activation energy.
- A.N. Lachinov, N.V. Vorob'eva. Phys. Usp., 49 (12), 1223 (2006). DOI: 10.3367/UFNr.0176.200612a.1249
- E.I. Evstigneyev, D.N. Zakusilo, D.S. Ryabukhin, A.V.Vasilyev. Russ. Chem. Rev., 92(8), RCR5082 (2023). DOI: 10.59761/RCR5082
- M.B. Hocking. J. Chem. Educ., 74 (9), 1055 (1997). DOI: 10.1021/ed074p1055
- A. Llevot, E. Grau, S. Carlotti, S. Grelier, H. Cramail. Macromol. Rapid Commun., 37, 9 (2016). DOI: 10.1002/marc.201500474
- L. Fakhra, X. Lingxia, I.K. Mahammed, A. Shehbaz, U.R. Mujeeb, Z. Daochen. Ind. Crops Prod., 204 (B), 117372 (2023). DOI: 10.1016/j.indcrop.2023.117372
- L. Fang, Y. Tao, J. Zhou, C. Wang, M. Dai, J. Sun, Q. Fang. Polym. Chem., 12 (5), 766 (2021). DOI: 10.1039/D0PY01653E
- D. Menglu, T. Yangqing, F. Linxuan, W. Caiyun, S. Jing, F. Qiang. ACS Sustainable Chem. Eng., 8 (39), 15013 (2020). DOI: 10.1021/acssuschemeng.0c05503
- K.G. Bogolitsyn, S.S. Khviuzov, M.A. Gusakova, M.A. Pustynnaya, A.A. Krasikova. Wood Sci. Technol., 52 (4), 1153 (2018). DOI: 10.1007/s00226-018-1008-z
- M.P. Tonkonogov. Phys. Usp., 41, 25 (1998). DOI: 10.1070/pu1998v041n01 abeh000328
- A.K. Jonscher. J. Phys. D, 32, 57 (1999). DOI 10.1088/0022-3727/32/14/201
- A. Chantal, T. Brotin, C. Garcia, F. Pelle, P. Goldner, B. Bigot, A. Collet. J. Am. Chem. Soc., 116 (5), 2094 (1994). DOI: 10.1021/ja00084a055
- S.K.K. Jatkar, C.M. Deshpande. J. Ind. Chem. Soc., 37, 1 (1960). DOI: 10.5281/zenodo.6531708
- T. Blythe, D. Bloor. Electrical Properties of Polymers (Cambridge, CUP, 2005)
- F. Kremer. J. Non-Crystalline Solids, 305 (1-3), 1 (2002). DOI: 10.1016/S0022-3093(02)01083-9
- G.D. Koposov, A.V. Tyagunin. Fizika passivnykh dielektrikov (SAFU, Arhangel'sk, 2013) (in Russian)
- V.L. Bonch-Bruevich, S.G. Kalashnikov, Fizika poluprovodnikov (Nauka, M., 1977) (in Russian)
- I.P. Zvyagin. Kineticheskie yavleniya v neuporyadochennykh poluprovodnikakh. (MGU, M., 1984). (in Russian)
- S. Havriliak, S. Negami. J. Polym. Sci. C, 14, 99 (1966). DOI: 10.1002/polc.5070140111
- K.S. Cole, R.H. Cole. J. Chem. Phys., 9, 341 (1941). DOI: 10.1063/1.1750906
- D.W. Devidson, R.H. Cole. J. Chem. Phys., 19, 1484 (1951). DOI: 10.1063/1.1748105
- P. Debye. Polar Molecules: Wisconsin Lectures (Chemical, Catalog Co., N.Y.,1929)
- A.S. Volkov, G.D. Koposov, R.O. Perfil'ev, A.V. Tyagunin. Opt. Spectrosc., 124 (2), 202 (2018). DOI: 10.1134/S0030400X18020200
- A.S. Volkov, G.D. Koposov, R.O. Perfil'ev. Opt. Spectrosc., 125 (3), 379 (2018). DOI: 10.1134/S0030400X18090242
- B.A. Belyaev, N.A. Drokin, V.F. Shabanov. Phys. Solid State, 48 (5), 973 (2006). DOI: 10.1134/S106378340605026X
- S. Khviyuzov, K. Bogolitsyn, A. Volkov, G. Koposov, M. Gusakova. Holzforschung, 74 (12), 1113 (2020). DOI: 10.1515/hf-2019-0149
- K.G. Bogolitsyn, S.S. Khviyuzov. Pol. Bull., 80 (1), 1001 (2023). DOI: 10.1007/s00289-022-04323-x
- K.G. Bogolitsyn, S.S. Khviyuzov, A.S. Volkov, G. D. Koposov, M.A.Gusakova. Russ. J. Phys. Chem. A, 93, 353 (2019). DOI: 10.1134/s0036024419020055
- A.S. Volkov, G.D. Koposov, S.S. Khviyuzov. Chem. Phys., 548, 111202 (2021). DOI: 10.1016/j.chemphys.2021.111202
- A.S. Volkov, S.S. Khviyuzov. J. Appl. Spectrosc., 90 (6), 1259 (2023). DOI: 10.1007/s10812-024-01662-7
- S.S. Khviyuzov, A.S. Volkov. Polym. Adv. Tecnol., 35 (6), e6467 (2024). DOI:10.1002/pat.6467
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.