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The QQ-branch spectrum of isotropic raman scattering in pure nitrogen:

modeling within the framework of classical impact theory at various

temperatures and pressures
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The complete relaxation matrix N2 was obtained by the method of classical trajectories at eight temperatures in

the range from 77 to 2400K. The calculations used the potential energy surface of the intermolecular interaction

N2−N2 of high accuracy. The obtained results are applied to calculate the spectra of the Q-branch of isotropic

Raman scattering of N2 at pressures of 1, 5 and 10 atm using the efficient Gordon and McGinnis algorithm. The

transformation of the Q-branch spectrum under temperature and pressure changes has been quantitatively traced,
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model reproducing the experimental data.
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1. Introduction

Collisional line interference (also known as spectral

exchange or collisional line coupling) occurs when the

lines overlap, which can happen at elevated pressures or

high densities of vibrational-rotational lines. In this case,

the absorption or scattering spectrum is not a simple sum

of the contributions of the contours of individual lines

and depends not only on the diagonal, but also on the

off-diagonal elements of the so-called relaxation matrix.

Experimental and theoretical studies of line interference in

the spectra of various molecules are important for numerous

practical applications and have a long history (see [1] and
the references given there). At the same time, various

simplifying approximations were used, for example, the

Rosencrantz model (weak overlap of lines) [2], empirical

approximation models (fitting laws) for the real part of the

relaxation matrix (PGL, EGL, MEGL, EPGL [1,3]) and

other simple models [4–8].

In principle, the parameters of convenient fitting laws can

be obtained from a sufficiently large amount of experimental

data on collisional line widths (diagonal elements of the

relaxation matrix) at various temperatures, provided they

are reliable (low measurement error). Strictly speaking, in

this case, the broadening should be attributable solely to

inelastic collisions [1].

The use of fitting and other models for the level-by-

level relaxation rates is a necessity which in many cases is

attributable to the difficulty of extracting information from

experimental data under the required conditions [9,10]. As a

result, these models have a limited range of applicability in

terms of pressure, temperature, and the range of rotational

quantum numbers. Another obvious disadvantage of fitting

laws is their empirical nature.

A physically sound and self-consistent approach to the

problem of collisional line broadening without simplifying

assumptions was proposed as early as 1966−1971 by

Gordon and McGinnis within the framework of the classical

impact theory [11–14] and the first few results, which are

rather evaluative, were obtained for the systems CO−He,
HCl−He, OCS−He with simple empirical intermolecular

potentials. After that, classical impact theory was forgotten

for many years, mainly because of the rapid development of

quantum and semi-classical methods.

The molecule of nitrogen N2 is the main component of

atmospheric air and, having a simple structure of vibrational-

rotational levels, is of interest for various spectroscopic

applications. For example, the spectrum of Q-branch

of isotropic Raman scattering of N2 is widely used in

the method of CARS diagnostics of processes in various

combustion systems (internal combustion engines, turbojet

engines, etc.). The spectrum of Q-branch is quite dense,

the effects of line interference are noticeable already at

pressures above 1 atm [9], and therefore its modeling

requires knowledge of all the elements of the relaxation

matrix. Fortunately, it is in this case that the broadening is

determined only by rotationally inelastic collisions, which

justifies the application of fitting laws with parameters

extracted from measurements of the half-widths of the lines.
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The diagonal elements of the relaxation matrix N2 (half-
widths of lines) were studied in detail in Ref. [15] over a

wide temperature range of 77−2400K. The results of three

methods of impact broadening theory were compared with

this experiment: quantum CC/CS, semi-classical Robert-

Bonamy (RB) and classical method. Two precise modern

potential energy surfaces (PES) of intermolecular interaction

were used. The quantum method of close coupling (CC)
provides reference results for other methods. However,

the transition to high temperatures requires too much

calculation time, even for such a simple system as N2−N2.

Therefore, the quantum approximation of coupled states

(CS) was also used in Ref. [15], which is generally accurate

at high temperature. Unfortunately, it was not possible

to perform calculations above 1000K and for values of

J > 14 even using the CS method. The results of the semi-

classical RB method turned out to be too large even for

the highest temperatures, for which this method is generally

considered to be more justified from the point of view of

describing translational motion. Unfortunately, alternatives

to quantum methods are required in particular in the region

of high temperatures. In this regard, we would also like to

note the limitations of the available measurement results for

T > 1500K and their very large error [16,17]. The classical

method is such an alternative, since its results turned out to

be close to the CC/CS values, while the semi-classical data

as a whole are overestimated by at least 30%.

The elements of the complete relaxation matrix for

Q-lines of isotropic Raman scattering in N2 were calculated

in Ref. [18] using the quantum combined CC/CS method

at room temperature. A refined version of the semi-classical

Robert-Bonamy formalism [20] was applied to reproduce

these reference results in subsequent study in Ref. [19].
However, a procedure for renormalization of the semi-

classical results was required for achieving agreement with

the CC/CS quantum data (i.e., in fact, they were adjusted to

the CC/CS results).
The classical Gordon impact theory was applied in

Ref. [21] to calculate all the elements of the relaxation matrix

for Q-lines of isotropic Raman scattering in pure nitrogen

at room temperature. The calculation was performed

using the classical trajectory method for binary collisions

of rigid molecules of N2 using the most accurate modern

intermolecular PES [22,23]. Since the agreement between

classical and fully quantum CC/CS results for diagonal and

non-diagonal elements turned out to be excellent, the path

became open for similar studies (already with spectrum

calculations) at low and high temperatures and (in the

future) for more complex molecular systems.

The complete relaxation matrix of the system N2−N2 is

calculated in this study at temperatures of 77, 113, 194,

298, 500, 1000, 1700 and 2400K. The calculations were

performed using an accurate three-dimensional classical

(C3D) trajectory method for binary collisions of rigid

molecules of N2 using modern PES, identical to that used in

Ref. [21]. The obtained results are applied to calculate the

spectra of Q-branch of the isotropic Raman scattering of N2

at pressures of 1, 5, and 10 atm using the efficient Gordon

and McGinnis algorithm [13,14].
The article is organized as follows. Basic formulas of

the classical impact theory of overlapping spectral lines are

provided sec. 2. Sec. 3 describes the PES of intermolecular

interaction N2−N2. The details of the trajectory calculations

are given in sec. 4. Sec. 5 describes the calculation of

the relaxation matrix and spectrum, including the Gordon

and McGinnis algorithm. The results are described and

discussed in sect. 6. Conclusions are formulated in sect. 7.

2. Basic formulas of the classical impact
theory of overlapping lines

The spectral density for the vibrationally rotational band

has the following form within the framework of the classical

impact theory of overlapping lines [12–14]:

F(ω) =
1

π
Im

[

dp̂d

ωÎ− (ω̂0 + iŴ)

]

,

pi =
gns(J i)(2J i + 1)

Z
exp

(

−
E ′′i

kBT

)

,

Z =

Jmax
∑

J i=1

gns(J i)(2J i + 1) exp[−E ′′i /kBT ]. (1)

In these formulas d is the vector of transition amplitudes

(dipole moment, polarizability), p̂ is the diagonal matrix of

Boltzmann factors for the initial state of each line: relative

population of the lower level of the line i at temperature

T , ω̂0 is the diagonal frequency matrix of low pressure

transition centers, ω — current cyclic frequency, Î is the

unit diagonal matrix, Z is the statistical sum, gns(J i) is the

statistical weight due to nuclear spin, J i is the rotational

quantum number of the lower state of the line i , E ′′i is the

energy of the lower level of the line i , kB is the Boltzmann

constant. The dimensions of the matrices are determined by

the number of lines considered in the spectrum.

The central object in the formula (1) is the relaxation ma-

trix Ŵ = nv̄σ̂ or the velocity matrix of collision transitions

between states, which is conveniently expressed in terms of

a cross-sectional matrix:

σ̂ = v̄−1〈v(1− Ŝ)〉b,v,O , (2)

where Ŝ is the scattering matrix, v̄ =
√

8kBT/πµ is the

average relative velocity of the pair, n is the numerical

density of broadening particles, µ is the reduced mass a

colliding pair. As usual, averaging is performed based on

the initial collision conditions (target parameter b, relative
velocity v, orientations O of the axes of both molecules

and their angular momenta). The averaging assumes that

successive collisions are uncorrelated. Classical formulas

for the elements Ŝ- of the matrix are given, for example,

in Ref. [12] for different branches of vibrational-rotational

bands of linear molecules of various types of molecular

spectra.
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Only the diagonal elements of the (generally complex)
matrix Ŵ are large enough at low pressures or low density

spectral lines to contribute to the spectrum, which is then

a simple sum of individual Lorentzian lines. The half-

widths and shifts of these lines, as usual, are proportional

to the pressure. In this case, the half-widths represent

the real parts of the diagonal elements: γ j = Re(Wi j),
and the shifts represent imaginary parts: δ j = −Im(Wi j).
When the pressure increases, off-diagonal elements create

”
interference“ between the lines (collisional coupling) and

cause constriction effects (not to be confused with Dicke

constriction).
The fact that collisions can be interpreted as

”
transfer“ of

intensity between different lines of the spectrum (collisional
coupling) is the central point of the classical impact theory

of the broadening of overlapping lines [12]. At the

same time, the relationship between individual rotational

components within the same branch of the vibrational-

rotational band occurs due to a change in the angular

momentum modulus, while the effects of its deorientation

link the various branches. The interpretation of dense

molecular spectra with overlapping components is a very

difficult task, since it requires knowledge of all the elements

of the relaxation matrix Ŵ.

The simplest case for the elements of the cross-section

matrix σ̂ is realized for Q-lines of isotropic Raman scattering

(if the oscillatory phase shift is neglected). In this case, the

cross-section matrix (2) is a real [12] with the elements

σ f i = v̄−1〈v(δ f i − P f i)〉b,v,O, (3)

where δ f i is the Kronecker symbol; P f i is the probability

that in this collision there is a
”
transfer“ of the rotation

frequency of the molecule from the line
”
i“ (before the colli-

sion) in the line
”

f “ (after the collision). This probability of

”
transfer“ of frequency P f i can be determined from classical

dynamics using the correspondence principle with quantum

mechanics. In its simplest form, the classical angular

momentum is rounded to the nearest integer multiple of

Planck’s constant. If this is done for the initial (before the

collision) and final (after the collision) angular momentum

values, then P f i = 1 for a pair of lines numbered i and f
with their corresponding values J i and J f the initial and

final J in the lower states of these lines (a transition from

the line i to the line f took place). All other probabilities

P f i in the equation (3) for σ f i in this case are assumed to

be zero.

3. Intermolecular interaction potential
N2−N2

The intermolecular interaction potential of a system of

two rigid linear rotators V (R, r1, r2) = V (R, γ1, γ2, φ) is

determined by the Jacobi coordinates — the intermolecular

distance R and three orientation angles — γ1, γ2 (angles
between vectors R, r1 and R, r2, respectively; r1, r2 are

axes of molecules) and the angle φ between the planes of

vectors R, r1 and R, r2 (
”
twist“ angle). In practice, as a rule,

ab initio potential is decomposed into a series of spherical

harmonics with a sufficiently large number of terms to

achieve high approximation accuracy and smoothness in

angular coordinates:

V (R, γ1, γ2, φ) =
∑

L1,L2,L

VL1,L2,L(R)AL1,L2,L(γ1, γ2, φ).

If the colliding molecules are homonuclear, then

the sum of (4) values L1, L2, L is even. Also

|L1 − L2| ≤ L ≤ |L1 + L2|. The angular functions

AL1,L2,L(γ1, γ2, φ) are determined by the normalized

product of spherical harmonics for interacting molecules 1

and 2 in the form

AL1,L2 ,L(γ1, γ2, φ)

=

(

2L + 1

4π

)1/2
∑

m

〈L1mL2 − m|L0〉Y m
L1

(γ1, 0)Y
−m

L2
(γ2, φ),

(5)
where Y m

L1
and Y m

L2
are ordinary spherical harmonics,

〈L1mL2 − m|L0〉 are Clebsch-Gordan coefficients, with

|m| ≤ min(L1, L2). Decomposition (4) makes angular

dependencies smooth, significantly increasing the accuracy

and speed of calculations because of the possibility of

obtaining analytical derivatives. The radial expansion

coefficients V L1, L2, L(R) are calculated by integrating over

the angles γ1, γ2, φ, ab initio of a potential discretely

defined on a four-dimensional grid.

Ab initio SAPT-type PES were used [22,23] in these

calculations like in Ref. [15,21]. 30 angular functions

were taken into account in decomposition (4). The radial

coefficients VL1,L2,L(R) were obtained using Gauss-Legendre

quadratures at the corners γ1, γ2 and using Chebyshev

quadratures at the corner φ.

4. Details of trajectory calculations

Dynamic calculations of collisions 14N2−
14N2 were per-

formed using precise classical three-dimensional (C3D)
equations of motion. The collision of two rigid lin-

ear molecules (rotators) is described by 17 first-order

Hamilton differential equations [24] in fixed molecular

coordinates. The explicit form of these equations is given

in Ref. [17]. The equations were integrated numerically

using the standard procedure of the IMSL library (Gear’s
implicit BDF method [25]). All calculations were performed

with double precision, with a typical stability parameter

TOL = 10−9 and a variable integration step within fixed

intervals of 5 ps of the time grid. The length of bond
14N−14N was assumed to be r = 1.1 Å [26], rotational

constant B = 1.9896 cm−1 [27]. The initial intermolecular

distance is large enough (Rmax = 15 Å) to exclude the initial

interaction.

The Monte Carlo method was used to select the initial

orientations of the vectors of the axes of the molecules r1,
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r2 and the angular velocities of rotation ω1, ω2, evenly

distributed in 3D-space under the condition of orthogonality

r1 ⊥ ω1, b f r2 ⊥ ω2. All calculations used Maxwell’s

averaging over the initial relative velocity in the range

v = (0.01− 3)vp, where vp = (2kBT/µ)1/2 is the most

probable relative velocity of the colliding pair (T is the

temperature, kB is the Boltzmann constant, µ is the reduced

mass of the colliding pair, µ = 7 a.m.u. for 14N2−
14N2). The

maximum aiming parameter bmax = 12 Å. Statistical errors

(standard errors of Monte Carlo averaging) for the diagonal

elements of the relaxation matrix (half-widths of lines) were
maintained at a level of less than 1%. This required from

60,000 to 150,000 collisions depending on the processing

temperature.

The initial angular frequency of the molecular rotation ω1

was determined using the initial rotational quantum number

J (Langer correction or
”
prescription“ [28,29]) using the

average value J for the optical transition in question [11,12]:
Iω = ~(Javerage + 1

2
), where I is the moment of inertia

of the rotator, ~ is the Planck constant. For Q-branch

(1J = 0)Javerage = J . The effective algorithm [29] was used
to draw the target parameter b. The convergence of the

Monte Carlo method in this case turns out to be about

twice as fast as with the traditional uniform drawing of b2.

The initial J2 — states (J2 is the rotational quantum number

of the buffer molecule N2) were selected discretely by the

Monte Carlo method in accordance with the Boltzmann

distribution, taking into account nuclear spin degeneracy

gns = [(−1)J2 + 3]/2. As a result, we have gns = 2for

ortho-levels N2 (even J2), and gns = 1 for para-levels (odd
J2).

5. Calculation of the relaxation matrix
and spectrum

The matrix Ŵ, calculated by statistical averaging over

collision parameters using the Monte Carlo method, does

not have to strictly obey the detailed balance, which is a

fundamental principle of statistical physics of equilibrium

gases. When performing a detailed balance, the number of

molecules in the collision process
”
line i“ →

”
line f “ per

unit time should be equal to the number of molecules in the

reverse process:

W f i pi = Wi f p f , σ f i pi = σi f p f . (6)

Here pi , p f is the Boltzmann population factors. Inaccu-

rate fulfillment of the ratio (6) is mainly attributable to the

limited number of collisions, especially for matrix elements

far from the main diagonal (large difference values |J − J′|,
where J and J′ are rotational quantum numbers of the

”
active“ molecule N2 before and after the collision). Special
calculations using different numbers of collisions confirmed

this assumption.

However, the principle of detailed balance can be

precisely restored a posteriori to improve cross-sections in

areas where there are fewer trajectories. For this purpose, a

simple numerical procedure was used to symmetrize the

cross-section matrix σ̂ [14], which allows redefining the

matrix elements to ensure a detailed balance:

σ DB
f i = (Ni + N f )

−1[Niσ f i + N f (p f /pi)σi f ]. (7)

Here Ni and N f are the numbers of trajectories for which

σ f i and σi f are calculated, respectively. It should be noted

that (7)
”
corrects“ only non-diagonal elements, leaving the

diagonal ones unchanged.

The relaxation matrices for N2 were calculated separately

for even J , J′ (ortho-N2) up to Jmax = J′max = 28 and for

odd J , J′ (pair-N2) to Jmax = J′max = 29 both using the

procedure (7) and without it. However, the spectra obtained

with and without (7) turned out to be almost identical. The

same result was obtained in Ref. [14] for CO−He.

The positions of the centers of the Raman Q-lines

(1J = 0, v = 0→ v = 1) of molecule 14N2 in the ground

electronic state X 16+ were calculated using the formula

νQ(J) ≈ ν0 − 1BJ(J + 1) + (D0 − D1)J
2(J + 1)2, (8)

where

ν0 = 2329.9168 cm−1, B0 = 1.989574 cm−1,

1B = B0 − B1 = 0.017384 cm−1,

D0 ∼ D1 = 5.76 · 10−6 cm−1 [27].

The effects of centrifugal stretching in (8) were not taken

into account.

The relative intensities of the Raman vibrational-rotational

transitions u← l were calculated according to the for-

mula [30]

Iu←l ∼ gns
2J + 1

2
exp(−El/kBT )I0, (9)

where I0 is the intensity of exciting radiation,

gns = [(−1)J + 3]/2 is the spin statistical

weight of the lower transition level u← l,
El ≈ B0J(J + 1)− D0J2(J + 1)2 is the energy of the

lower transition level u← l .
If the spectrum consists of many lines, then the direct cal-

culation of the spectral density F(ω) using the formula (1)
is a very time-consuming procedure, since an inversion

of the complete (in the general case, complex) matrix is

required for each frequency ω in the spectrum. In addition,

the results for a large number of lines are inaccurate and

numerically unstable. A method of calculation of F(ω) is

proposed in Ref. [13,14], which is significantly faster than

the direct matrix inversion procedure in (1) and, moreover,

is numerically stable even for a large number of lines in the

spectrum. The method is based on a single diagonalization

of the matrix ω̂0 + iŴ, which does not depend on the

current frequency ω: X̂−1(ω̂0 + iŴ)X̂ = λ̂λ̂, X̂ — matrices

of eigenvalues and eigenvectors. Further, the spectrum is
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obtained for all required frequencies ω after substitution

in (1):

F(ω) = Im

N
∑

i=1

{

ξi

ω − λi

}

,

ξi = (dX̂)i(X̂
−1p̂d)i ≡

( N
∑

j=1

d jX ji

)( N
∑

k=1

X−1ik pkkdk

)

,

(10)
where N is the total number of spectral lines considered,

ξi and λi are complex weights and eigenvalues. The

complex matrices λ̂, X̂ are obtained from the diagonalization

procedure. In these calculations, the standard procedures

of the IMSL library for a complex matrix of general form

were used (diagonalization — DEECCG (QR algorithm),
inversion — DLINCG).

6. Results and discussion

The relaxation matrix for the Q-branch of isotropic

Raman scattering N2 was calculated using the classical

method described above at several temperatures in the

range from 77 to 2400 K. These data were then used in the

calculation of spectra at various pressures from 1 to 10 atm

using formulas (10). The results for the lowest temperature

of 77K do not make sense at pressures above 1 atm because

of the risk of conversion of nitrogen into liquid state

(saturated vapor pressure N2 at 78K is 1.093 atm [31]). In
parallel, the approximation of the sum of isolated Lorentzian

lines was tested, which does not take into account line

interference and is a simple special case when the off-

diagonal elements of the matrix Ŵ are zero.

The calculated elements of the relaxation matrix for

different temperatures were checked for compliance with

the sum rule
J′

max
∑

J′ 6=J
WJ′J = −WJJ or

J′

max
∑

J′=0

WJ′J = 0 [10,18,21].

The relative errors

∣

∣

∣

∣

28
∑

J′=0

WJ′J

∣

∣

∣

∣

/WJJ for J ≤ 14 are as follows:

77K — (0.3−2%), 113K — (0.13−1.7%), 194K —
(0.1−2%), 298K — (0.01−0.02%), 500K — (0.2−2.8%),
1000K — (0.05−3%), 1700K — (0.8−16%), 2400K —
(0.65−34%). Large inaccuracy values of the sum rule

at 1700K and 2400K for individual J (at 1700 K 9−16%
for J = 8−14, at 2400K 9−34% for J = 4−14) are

associated with insufficient statistics of the Monte Carlo

method when calculating very small values of the elements

of the relaxation matrix at such high temperatures.

Also, for comparison, calculations were performed using

the EGL fitting model, in which the off-diagonal elements

of the relaxation matrix have the following form [10]:

WJ′J = α

(

T
T0

)−N (
1 + 1.5EJ/kBTδ
1 + 1.5EJ/kBT

)2

× exp(−β|EJ′ − EJ |/kBT ),

Table 1. Interference effect of spectral lines in the spectrum

of Q-branches of isotropic Raman scattering of pure nitrogen:

average deviation 1 of the intensity of the spectrum calculated

with interference from the Lorentzian intensity

T , K
1, %

1 atm 5 atm 10 atm

77 43.80

113 26.11 78.46 116.19

194 13.15 40.68 62.16

298 7.07 22.40 37.96

500 3.48 11.14 18.25

1000 1.39 4.73 7.80

1700 0.76 2.74 4.63

2400 0.55 2.02 3.46

with the following parameter values: N = 1.365,

T0 = 295K, α = 52.89 · 10−3 cm−1atm−1, β = 1.890,

δ = 1.174 ( These values were used in Ref. [10] for

modeling the spectra and comparing them with the

experiment). According to the authors of Ref. [10], the

EGL model reproduces the measured spectra satisfactorily.

For elements of the matrix WJJ′, in this work, as in

Ref. [10], the principle of detailed balance was applied, and

for diagonal elements, the sum rule was applied.

Figure 1−4 shows illustrations of typical types of spectra

for four temperatures and three pressures. The results

of spectrum processing for all temperatures and pressures

are given in Table. 1 and 2. Table 1 shows the effect

of interference on the spectrum — the difference of the

spectrum calculated taking interference into account from

the Lorentzian spectrum (the sum of individual Lorentzian

lines). The average value of the modulus of deviation of the

intensity I , calculated taking into account interference, from

the Lorentzian intensity ILor:

1 =
1

M

(

M
∑

k=1

|Ik − ILork |

)

/〈I〉, 〈I〉 =
1

M

M
∑

k=1

Ik , (11)

where Ik and ILork are the values of the corresponding

intensities at point k of the spectrum, M = 1001 is the total

number of points in the spectrum.

Table 2 shows the averaged modulus of intensity deriva-

tives with respect to frequency:

D =
1

M

M
∑

k=1

∣

∣

∣

∣

(

∂I
∂ω

)

k

∣

∣

∣

∣

, DLor =
1

M

M
∑

k=1

∣

∣

∣

∣

(

∂ILor

∂ω

)

k

∣

∣

∣

∣

,

(12)
characterizing the degree of

”
sharpness“(or

”
ripple“) of the

spectrum as a whole at various pressures and temperatures.

The figures and tables show the following.

1. The spectral lines move into the long-wavelength

region in accordance with (8) with the growth of J . The

spectrum is determined solely by the wings of the lines

at ν > ν0 = 2329.9168 cm−1, and the spectrum calculated
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Figure 1. Interference of spectral lines in the system N2−N2 . Spectra of Q-branches (v = 0 → v = 1) of isotropic Raman scattering

in N2at T = 113K and different pressures: 1 is the spectrum calculated with taking into account interference; 2 is the Lorentzian spectrum

(sum of individual Lorentzian lines, no interference); 3 is the fitting EGL model with parameters [10].

Table 2. Degree of
”
sharpness“ of spectrum of Q-branch of isotropic Raman scattering N2: averaged derivatives of the spectrum

calculated taking into account interference D and Lorentzian DLor spectra

T , K
D (rel. unit/cm−1) DLor (rel. unit/cm−1)

1 atm 5 atm 10 atm 1 atm 5 atm 10 atm

77 3.58 2.22

113 5.13 4.02 0.49 4.53 1.30 0.07

194 17.39 4.15 4.26 16.95 2.14 1.47

298 43.93 5.37 4.07 43.67 4.25 2.19

500 115.61 15.52 5.95 115.41 14.95 4.86

1000 317.64 62.21 22.05 317.61 61.92 21.64

1700 553.88 135.16 54.11 553.93 135.08 53.87

2400 728.32 201.62 86.26 728.38 201.57 86.09

taking interference into account decreases much faster than

the Lorentzian spectrum. This result is quite natural,

since this spectrum is always sharper than the Lorentzian

spectrum.

2. The number of relatively intense lines in the Q-branch

increases with the increase of the temperature, the spectra

shift to the long-wavelength region and their
”
sharpness“

increases.

3. The rotational structure of the Q-branch is gradually

”
washed out“ due to the broadening of the lines with the

increase of the pressure. At the same time, an increase of

the temperature prevents this effect. This behavior is typical
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Figure 2. The same as in Fig. 1, but for T = 298K.

for both the interference-based spectrum and the Lorentzian

spectrum. The rotational structure is solvable at all pressures

at T ≥ 500K, and it
”
washes out“ completely at P > 1 atm

at T ≤ 194K.

4. The interference effect increases with the increase of

the pressure (a well-known fact), and noticeably decreases

with the increase of the temperature. So, it can be ignored

for T > 1700K, even at 10 atm. Physically, the attenuation

of the interference effect is obvious: with constant gas

pressure, the width of the lines decreases, leading to a

decrease in the overlap of the lines and, as a result, a

decrease in the manifestations of line interference.

5. The calculated spectra, taking into account interference,

are in satisfactory agreement with the results obtained in the

framework of the EGL model simulating the experiment.

The differences are due to slightly different relaxation matri-

ces (direct trajectory modeling in the present calculations,

while the parameters of the EGL model used were obtained

in Ref. [10] from measurements of the half-widths of lines

in the temperature range of 295−1500K).
In conclusion, we would like to note one important point.

For various practical applications, the use of direct calcu-

lation of the complete relaxation matrix using the classical

trajectory method is unacceptable due to the complexity. In

practice, fitting laws are used that are functionally depen-

dent on the energy difference of the levels. They contain

several adjustment coefficients depending on pressure and

temperature. These coefficients are usually calculated by

fitting a simple law to the measured half-widths of the

lines [1]. An obvious disadvantage of the fitting laws for

the rates of multilevel relaxation is their empirical nature.

For example, it is noted in Ref. [10] that the PEGL and

EGL models used are completely different, despite the fact

that both reproduce the broadening coefficients over a wide

temperature range for a large number of lines of Q-branch of

N2. In addition, a serious problem lies in the accuracy of the

available experimental half-widths under various conditions.

As a rule, it is impossible to perform measurements in

extreme conditions, or their error is too high [15–17].
In addition, the experimental data from different research

groups sometimes markedly differ. Therefore, half-width

measurements should be used with caution to obtain the

velocities of level-by-level rotational relaxation. It is more

reliable to use a different approach — to use the results

of theory. However, as noted in the introduction, not

every theory is capable of providing adequate results. As
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Figure 3. The same as in Fig. 1, but for T = 500K.

for the reference fully quantum CC/CS calculations, they

are practically impossible at very high temperatures due

to excessive resource consumption. In addition, numerical

problems arise related to the convergence of quantum

computing (even at room temperature [18]). The classical

method in the theory of collisional line broadening is free

from such difficulties, it is a worthy alternative to quantum

circuits, and it makes sense to use its results to parameterize

the elements of the relaxation matrix in fitting models.

7. Conclusions

1. This paper presents for the first time a physically sound

and self-consistent simulation of the spectrum of Q-branch

of isotropic Raman scattering in pure nitrogen over a wide

temperature range from 77 to 2400K at pressures of 1,

5, and 10 atm. The calculations were performed within the

framework of the classical Gordon impact theory, taking into

account the interference of overlapping oscillatory-rotational

lines. The high-precision intermolecular potential N2−N2

was used in trajectory calculations. The purpose of this

study is to offer a reliable, visual, and physically sound tool

for spectrum modeling.

2. The transformation of the spectrum of the Q-branch in

case of changes of temperature and pressure is quantitatively

traced, as well as the difference between the spectrum

calculated taking into account interference and the sum of

isolated Lorentzian lines when the interference effect is not

taken into account. All calculated spectra are compared

with those obtained using the EGL fitting model, which

satisfactorily reproduces the results of measurements [10].

3. The classical C3D-approach to calculating the rates

of level-by-level rotational relaxation in molecular collisions

can serve as a basis for verifying and expanding the

applicability of simple approximation empirical laws used

in practice. At the same time, trajectory modeling should

be performed using reliable, maximally accurate PES of

intermolecular interaction. The limitation of the applicability

of the obtained results is the binary nature of collisions

(i.e., not too high pressures) and the final statistics of

the Monte Carlo method, which in some cases turns out

to be insufficient to ensure the required accuracy. The

disadvantage of the described version of the classical impact

theory is also the rather crude
”
box quantization“ procedure
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Figure 4. The same as in Fig. 1, but for T = 1000K.

for determining Pel . Its inaccuracy will be especially

noticeable for molecules with large rotational constants. In

this case, it is necessary to replace this procedure with

a more flexible one. We would also like to note the

possible inadequacy of the classical description of molecular

dynamics for light molecular pairs at very low temperatures.
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