Carbon dioxide conversion in microwave discharge plasma with counter-flow gas quenching
Mansfeld D. A. 1,2, Vodopyanov A. V. 1,2, Chekmarev N. V. 2, Preobrazhensky E. I. 2
1Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia
2Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: Mda1981@ipfran.ru, avod@ipfran.ru, chekmarev@ipfran.ru, evgenypr123@gmail.com

PDF
Decomposition of carbon dioxide in plasma supported by magnetron radiation with a frequency of 2.45 GHz in the flow of carbon dioxide at atmospheric pressure has been studied. It is shown that quenching of reaction products by a counter flow of gas, more than 1.5 times increases the degree of conversion and energy efficiency of carbon dioxide decomposition. At record values of energy efficiency of 43.9% and conversion of 14.3%, the carbon monoxide yield with productivity of 0.2 kg/h at microwave radiation energy consumption of 6.56.5 kW· h/kg is provided. Keywords: Microwave heating, atmospheric pressure discharge, carbon dioxide, quenching.
  1. Y. Vadikkeettil, Y. Subramaniam, R. Murugan, P.V. Ananthapadmanabhan, J. Mostaghimi, L. Pershin, C. Batiot-Dupeyrat, Y. Kobayashi, Renew. Sustain. Energy Rev., 161, 112343 (2022). DOI: 10.1016/J.RSER.2022.112343
  2. E. Kustova, M. Mekhonoshina, Phys. Fluids, 32, 096101 (2020). DOI: 10.1063/5.0021654
  3. Yu.A. Lebedev, V.A. Shakhatov, Russ. J. Appl. Chem., 95 (1), 1 (2022). DOI: 10.1134/S1070427222010013
  4. M.Y. Ong, S. Nomanbhay, F. Kusumo, P.L. Show, J. Clean. Prod. 336, 130447 (2022). DOI: 10.1016/j.jclepro.2022.130447
  5. G.J. Van Rooij, H.N. Akse, W.A. Bongers, M.C.M. Van De Sanden, Plasma Phys. Control. Fusion, 60, 014019 (2017). DOI: 10.1088/1361-6587/AA8F7D
  6. R. Vertongen, A. Bogaerts, J. CO2 Utilization, 72, 102510 (2023). DOI: 10.1016/J.JCOU.2023.102510
  7. S. Van Alphen, A. Hecimovic, C.K. Kiefer, U. Fantz, R. Snyders, A. Bogaerts, Chem. Eng. J., 462, 142217 (2023). DOI: 10.1016/J.CEJ.2023.142217
  8. N.V. Chekmarev, D.A. Mansfeld, A.V. Vodopyanov, S.V. Sintsov, E.I. Preobrazhensky, M.A. Remez, J. CO2 Utilization, 82, 102759 (2024). DOI: 10.1016/j.jcou.2024.102759
  9. E. Carbone, F. D'Isa, A. Hecimovic, U. Fantz, Plasma Sources Sci. Technol., 29, 055003 (2020). DOI: 10.1088/1361-6595/ab74b4
  10. B. Wanten, R. Vertongen, R. De Meyer, A. Bogaerts, J. Energy Chem., 86, 180 (2023). DOI: 10.1016/j.jechem.2023.07.005
  11. R.J. Detz, B. van der Zwaan, J. Energy Chem., 71, 507 (2022). DOI: 10.1016/J.JECHEM.2022.04.014

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru