Influence of sulfur on yield and morphology of long carbon nanotubes
Khaskov M.A. 1, Karaeva A.P. 1, Mitberg E. B. 1, Mordkovich V. Z. 1
1"TECHNOLOGICAL INSTITUTE FOR SUPERHARD AND NOVEL CARBON MATERIALS OF NATIONAL RESEARCH CENTRE "KURCHATOV INSTITUTE", Troitsk, Moscow, Russia
Email: khaskov@tisnum.ru, karaevaar@tisnum.ru, mitbergeb@tisnum.ru, mordkovich@tisnum.ru

PDF
The effect of a sulfur-containing activator of carbon nanotube growth on the yield and morphology of the synthesis products obtained by aerosol method of gas-phase chemical vapor deposition was studied at the temperature of 1150oC. Various contents of the sulfur-containing activator in reaction mixtures were used, where the sulfur content was varied in the interval of 0.1-2.0 mass%. The synthesis products were studied by electron microscopy and thermogravimetry. It was shown that the sulfur content affected both the yield and the morphology of the synthesis product obtained, as well as the content of residual catalyst. It was revealed that with a sulfur content of 0.1 to 0.5 mass%, long unidirectional carbon nanotubes prevail in the synthesis products, and with a sulfur content of 0.5 mass%, curved and Y-shaped nanotubes are synthesized. With further increasing of the sulfur content in the reaction mixture, the proportion of unidirectional carbon nanotubes in the products of synthesis is decreased, and "feathered nanotubes", including spheroidal particles, are appeared. The use of 1.0 mass% or more sulfur in the reaction mixture leads to inhibition of continuous growth of carbon nanotubes with the formation of nanosized clusters of amorphous carbon and graphite-like particles. The results obtained allow us to find the optimal reaction mixture contents for the synthesis of carbon nanotubes with a high yield. It was shown that the presence of sulfur affects the nature of the interaction of carbon and the catalyst particles, while the bond of nanotubes with iron weakens, which favorably affects their growth. Keywords: CNT, carbon nanotubes, nanocomposites, gas-phase chemical vapor deposition, electron microscopy, thermal analysis, growth activator, thiophene.
  1. S. Yang. Archit. Struct. Constr., 3 (3), 289 (2023). DOI: 10.1007/s44150-023-00090-z
  2. A.K. Jagadeesan, K. Thangavelu, V. Dhananjeyan. Publish with Intech Open, (2020). DOI: 10.5772/intechopen.92995
  3. S. Abdalla, F. Al-Marzouki, A.A. Al-Ghamdi, A. Abdel-Daiem. Nanoscale Res Lett., 10 (1), 358 (2015). https://doi.org/10.1186/s11671-015-1056-3
  4. M.F. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart. Science, 339 (6119), 535 (2013). DOI: 10.1126/science.1222453
  5. E. Muchuweni, E.T. Mombeshora, B.S. Martincigh, V.O. Nyamori. Front. Chem., 9 (2022). DOI: 10.3389/fchem.2021.733552
  6. A. Venkataraman, V.A. Eberechukwu, Y. Chen, C. Papadopoulos. Nanoscale Res. Lett., 14 (1), 220 (2019). DOI: 10.1186/s11671-019-3046-3
  7. N. Gupta, S.M. Gupta, S.K. Sharma. Carbon Lett., 29, 419 (2019). DOI: 10.1007/s42823-019-00068-2
  8. R. Rao, C.L. Pint, A.E. Islam, R.S. Weatherup, S. Hofmann et al. ACS Nano, 12 (12), 11756 (2018). DOI: 10.1021/acsnano.8b06511
  9. M. Trivedi. Reecha. Chem. Sci. Rev. Lett., 9 (33), 1 (2020). DOI: 10.37273/chesci.CS20510188
  10. K. Cui, J. Chang, L. Feo, C.L. Chow, D. Lau. Front. Mater., 9 (2022). DOI: 10.3389/fmats.2022.861646
  11. D. Liu, L. Shi, Q. Dai, R. Mehmood, Z. Gu, L. Dai. Trend Chem., 6 (4), 186 (2024). DOI: https://doi.org/10.1016/j.trechm.2024.02.002
  12. V.Z. Mordkovich, M.A. Khaskov, V.A. Naumova, V.V. De, B. Kulnitskiy, A.R. Karaeva. Compos. Sci., 7 (2), (2023). DOI: 10.3390/jcs7020079
  13. J. Chen, L. Yan. Fullerenes, Nanotubes and Carbon Nanostructures, 26 (11), 697 (2018). DOI: 10.1080/1536383X.2018.1476345
  14. Y.-L. Li, I.A. Kinloch, A.H. Windle. Science, 304, 276 (2004). DOI: 10.1126/science.1094982
  15. A.R. Karaeva, N.V. Kazennov, E.A. Zhukova, V.Z. Mordkovich. Mater. Today, 5 (12), 25951 (2018). DOI: 10.1016/j.matpr.2018.08.010
  16. B. Orban, T. Holtzl, Dalton Trans., 51, 9256 (2022). DOI: 10.1039/d2dt00355d
  17. D. Conroy, A. Moisala, S. Cardoso, A. Windle, J. Davidson. Chem. Eng. Sci., 65 (10), 2965 (2010). DOI: 10.1016/J.CES.2010.01.019
  18. D. Janas, K.K. Koziol. Nanoscale, 8 (47), 19475 (2016). DOI: 10.1039/c6nr07549e
  19. V. Reguero, B. Aleman, B. Mas, J.J. Vilatela. Chem. Mater., 26, 3550 (2014). DOI: 10.1021/cm501187x
  20. R.M. Sundaram, K.K. Koziol, A.H. Windle. Adv. Mater., 23 (43), 5064-8 (2011). DOI: 10.1002/adma.201102754
  21. S.-H. Lee, J. Park, H.-R. Kim, J. Lee, K.-H. Lee, RSC Adv., 5, 41894 (2015). DOI: 10.1039/C5RA04691B
  22. C. Hoecker, F. Smail, M. Pick, L. Weller, A.M. Boies. Sci. Rep., 7, 14519 (2017). DOI: 10.1038/s41598-017-14775-1
  23. M.A. Khaskov, A.R. Karaeva, V.N. Denisov, B.A. Kultitskiy, V.Z. Mordkovich. Chem. Chem. Tech., 56 (7), 76 (2013)
  24. A.R. Karaeva, M.A. Khaskov, E.B. Mitberg, B. Kulnitskiy, I.A. Perezhogin, L. Ivanov, V. Denisov, A. Kirichenko, V. Mordkovich. Fuller. Nanotub. Carbon Nanostruct., 20 (4-7), 411 (2012). DOI: 10.1080/1536383X.2012.655229
  25. A.R. Karaeva, S.A. Urvanov, N.V. Kazennov, E. Mitberg, V. Mordkovich. Nanomaterials, 10 (11), 2279 (2020). DOI: 10.3390/nano10112279
  26. A. Bhattacharjee, A. Rooj, D. Roy, M. Roy. J. Exper. Phys., 2014, Article ID 513268 (2014). DOI: 10.1155/2014/513268
  27. S. Xian, Q. Xu, H. Li. ACS Omega, 8 (37), 33982 (2023). DOI: 10.1021/acsomega.3c04847
  28. M.A. Khaskov. Chem. Chem. Tech., 66 (10), 24 (2023). DOI:10.6060/ivkkt.20236610.1y
  29. H. Zhu, L. Ci, C. Xu, J. Liang, D. Wu. Diamond and Related Mater., 11 (7), 1349 (2002). DOI: 10.1016/S0925-9635(01)00745-2
  30. J.M. Romo-Herrera, B.G. Sumpter, D.A. Cullen, H. Terrones, E. Cruz-Silva, D.J. Smith, V. Meunier, M. Terrones. Angew. Chem. Int. Ed., 47 (16), 2948 (2008). DOI: 10.1002/anie.200705053

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru