Studying the dynamics of drying droplets using a graphene sensor
Andryushcheko V. A. 1, Betke I. A.1, Bogomolova A. I.1, Sorokin D. V.1
1Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: vladimir.andryushchenko@gmail.com

PDF
The evaporation of water droplets on graphene sensors, which are a non-conductive substrate made of silicon dioxide with graphene deposited on it, obtained by chemical vapor deposition, as well as copper electrodes deposited by magnetron method, is studied. It is shown that a water droplet deposited on the sensor surface changes its conductivity as it evaporates. The dependences of the resistance of the graphene sensor on the geometric characteristics of the droplet (height, contact angle, contact area of the droplet with the surface) are established. The sensitivity of the sensor to determining the evaporation mode of the droplet is demonstrated. Keywords: graphene, conductivity, water droplet, sensor.
  1. M. Javaid, A. Haleem, Sh. Rab, R.P. Singh, R. Suman. Sen. Int., 2, 100121 (2021). DOI: 10.1016/j.sintl.2021.100121
  2. Sh. Dhall, B.R. Mehta, A.K. Tyagi, K. Sood. Sen. Int., 2, 100116 (2021). DOI: 10.1016/j.sintl.2021.100116
  3. F. Costa, S. Genovesi, M. Borgese, A. Michel, F.A. Dicandia, G. Manara. Sensors, 21 (9), 3138 (2021). DOI: 10.3390/s21093138
  4. N. Wen, L. Zhang, D. Jiang, Z. Wu, B. Li, C. Suna, Z. Guo. J. Mat. Chem. A, 8 (48), 25499 (2020(2021)). DOI: 10.1039/D0TA09556G
  5. A. Nag, A. Mitra, S.C. Mukhopadhyay. Sens. Actuators A Phys., 270, 177 (2018). DOI: 10.1016/j.sna.2017.12.028
  6. J. Liu, S. Bao, X. Wang. Micromachines, 13 (2), 184 (2022). DOI: 10.3390/mi13020184
  7. G. Li, G. Hong, D. Dong, W. Song, X. Zhang. Adv. Mater., 30, 1801754 (2018). DOI: 10.1002/adma.201801754
  8. Z. Yang, L. Wang, W. Sun, S. Li, T. Zhu, W. Liu, G. Liu. Appl. Surf. Sci., 401, 146 (2017). DOI: 10.1016/j.apsusc.2017.01.009
  9. S.S.A. Kumar, S. Bashir, S.K. Ramesh, S.A. Ramesh. Flat. Chem., 31, 100326 (2022). DOI: 100326.10.1016/j.flatc.2021.100326
  10. A.K. Geim, K.S. Novoselov. Nat. Mater., 6 (3), 183 (2007). DOI: 10.1038/nmat1849
  11. E.W. Hill, A. Vijayaragahvan, K. Novoselov. IEEE Sens. J., 11 (12), 3161 (2011). DOI: 10.1109/JSEN.2011.2167608
  12. Q. He, Sh. Wu, Z. Yina, H. Zhang. Chem. Sci., 3 (6), 1764 (2012). DOI: 10.1039/C2SC20205K
  13. Y. Liu, X. Dong, P. Chen. Chem. Soc. Rev., 41 (6), 2283 (2012). DOI: 10.1039/C1CS15270J
  14. T. Kuila, S. Bose, P. Khanra, A.K. Mishra, N.H. Kim, J.H. Lee. Biosens. Bioelectron., 26 (12), 4637 (2011). DOI: 10.1016/j.bios.2011.05.039
  15. Yu. Zhang, Y.-W. Tan, H.L. Stormer, Ph. Kim. Nature, 438 (7065), 201 (2005). DOI: 10.1038/nature04235
  16. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov. Nature, 438 (7065), 197 (2005). DOI: 10.1038/nature04233
  17. M. Pumera, A. Ambrosi, A. Bonanni, E.L.Kh. Chng, H.L. Poh. Trends Analyt. Chem., 29 (9), 954 (2010). DOI: 10.1016/j.trac.2010.05.011
  18. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov. Nat. Mater., 6 (9), 652 (2007). DOI: 10.1038/nmat1967
  19. X. Xu, Ch. Liu, Zh. Sun, T. Cao, Zh. Zhang, E. Wang, Zh. Liu, K. Liu. Chem. Soc. Rev., 47 (9), 3059 (2018). DOI: 10.1039/C7CS00836H
  20. E. Voloshina, D. Usvyat, M. Schutz, Yu. Dedkov, B. Paulus. Phys. Chem. Chem. Phys., 13 (25), 12041 (2011). DOI: 10.1039/C1CP20609E
  21. D.W. Boukhvalov, M.I. Katsnelson. J. Phys. Condens. Matter, 21 (34), 344205 (2009). DOI: 10.1088/0953-8984/21/34/344205
  22. C. Zhang, L. Fu, N. Liu, M. Liu, Y. Wang, Z. Liu. Adv. Mater., 23 (8), 1020 (2011). DOI: 10.1002/adma.201004110
  23. U.N. Maiti, W.J. Lee, J.M. Lee, Y. Oh, J.Y. Kim, J.E. Kim, J. Shim, T.H. Han, S.O. Kim. Adv. Mater., 26 (1), 40 (2014). DOI: 10.1002/adma.201303265
  24. V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.Ch. Kemp, P. Hobza, R. Zboril, K.S. Kim. Chem. Rev., 112 (11), 6156 (2012). DOI: 10.1021/cr3000412
  25. A.D. Smith, K. Elgammal, F. Niklaus, A. Delin, A.C. Fischer, S. Vaziri, F. Forsberg, M. R sander, H. Hugosson, L. Bergqvist, S. Schroder, S. Kataria, M. Ostlinga, M.C. Lemme. Nanoscale, 7, 19099 (2015). DOI: 10.1039/C5NR06038A
  26. O. Leenaerts, B. Partoens, F.M. Peeters. Microelectronics J., 40 (4-5), 860 (2009). DOI: 10.1016/j.mejo.2008.11.022
  27. F. Yavari, Ch. Kritzinger, Ch. Gaire, Li Song, H. Gulapalli, Th. Borca-Tasciuc, P.M. Ajayan, N. Koratkar. Small, 6 (22), 2535 (2010). DOI: 10.1002/smll.201001384
  28. T.O. Wehling, A.I. Lichtenstein, M.I. Katsnelson. Appl. Phys. Lett., 93 (20), 202110 (2008). DOI: 10.1063/1.3033202
  29. C.E. Giusca, V. Panchal, M. Munz, V.D. Wheeler, L.O. Nyakiti, R.L. Myers-Ward, D.K. Gaskill, O. Kazakova. Adv. Mater. Interf., 2 (16), 1500252 (2015). DOI: 10.1002/admi.201500252
  30. Yu. Liu, H. Liu, Y. Chu, Y. Cui, T. Hayasaka, V. Dasaka, L. Nguyen, L. Lin. Adv. Mater. Interf., 5 (9), 1701640 (2018). DOI: 10.1002/admi.201701640
  31. R.M. Ribeiro, N.M.R. Peres, J. Coutinho, P.R. Briddon. Phys. Rev. B, 78 (7), 075442 (2008). DOI: 10.1103/PhysRevB.78.075442
  32. O. Leenaerts, B. Partoens, F.M. Peeters. Phys. Rev. B., 77 (12), 125416 (2008). DOI: 10.1103/PhysRevB.77.125416
  33. O. Leenaerts, B. Partoens, F.M. Peeters. Phys. Rev. B, 79 (23), 235440 (2009). DOI: 10.1103/PhysRevB.79.235440
  34. X. Li, Ji Feng, E. Wang, Sh. Meng, J. Klimev s, A. Michaelides. Phys. Rev. B, 85 (8), 085425 (2012). DOI: 10.1103/PhysRevB.85.085425
  35. C. Melios, C.E. Giusca, V. Panchal, O. Kazakova. 2D Materials, 5 (2), 022001 (2018). DOI: 10.1088/2053-1583/aa9ea9
  36. M.H. Bagheri, R.T. Loibl, J.A. Boscoboinik, S.N. Schiffres. Carbon, 155, 580 (2019). DOI: 10.1016/j.carbon.2019.08.083
  37. M.F. Craciun, S. Russo, M. Yamamoto, S. Tarucha. NanoToday, 6 (1), 42 (2011). DOI: 10.1016/j.nantod.2010.12.001
  38. J. Ma, A. Michaelides, D. Alf\`e, L. Schimka, G. Kresse, E. Wang. Phys. Rev. B, 84 (3), 033402 (2011). DOI: 10.1103/PhysRevB.84.033402
  39. H. Wang, G. Yu. Adv. Mater., 28 (25), 4956 (2016). DOI: 10.1002/adma.201505123
  40. Ch. Melios, A. Centeno, A. Zurutuza, V. Panchal, C.E. Giusca, S. Spencer, S.R.P. Silva, O. Kazakova. Carbon, 103, 273 (2016). DOI: 10.1016/j.carbon.2016.03.018
  41. W.L. Tong, Ye.M. Hung, H. Yu, M.K. Tan, B.Th. Ng, B.Th. Tan, H.A. Wu, A.K. Soh. Adv. Mater. Interf., 5 (13), 1800286 (2018). DOI: 10.1002/admi.201800286
  42. Y. Han, Z. Xu, C. Gao. Adv. Func. Mater., 23 (29), 3693 (2013). DOI: 10.1002/adfm.201202601
  43. M.-F. Li, Y.-G. Liu, G.-M. Zeng, N. Liu, Sh.-Bo Liu. Chemosphere., 226, 360 (2019). DOI: 10.1016/j.chemosphere.2019.03.117
  44. J. Feng, Z. Guo. Nanoscale horiz., 4 (2), 339 (2019). DOI: 10.1039/C8NH00348C
  45. C.J. Shih, M.S. Strano, D. Blankschtein. Nat. Mater., 12 (10), 866 (2013). DOI: 10.1038/nmat3760
  46. F. Taherian, V. Marcon, N.F.A. van der Vegt, F. Leroy. Langmuir, 29 (5), 1457 (2013). DOI: 10.1021/la304645w
  47. K. Xia, M. Jian, W. Zhang, Yi. Zhang. Adv. Mater. Interf., 3 (6), 1500674 (2016). DOI: 10.1002/admi.201500674
  48. A. Kayal, A. Chandra. J. Phys. Chem. C, 123 (10), 6130 (2019). DOI: 10.1021/acs.jpcc.9b01040
  49. Q. Li, Yi. Xiao, Xi. Shi, Sh. Song. Nanomaterials, 7 (9), 265 (2017). DOI: 10.3390/nano7090265
  50. Yi. Zhang, H.B. de Aguiar, J.T. Hynes, D. Laage. J. Phys. Chem. Lett., 11 (3), 624 (2020). DOI: 10.1021/acs.jpclett.9b02924
  51. L.B. Dreier, Z. Liu, A. Narita, M.-J. van Zadel, K. Mullen, K.-J. Tielrooij, E.H.G. Backus, M. Bonn. J. Phys. Chem. C, 123 (39), 24031 (2019). DOI: 10.1021/acs.jpcc.9b05844
  52. V. Andryushchenko, D. Sorokin, M. Morozova, O. Solnyshkina, D. Smovzh. Appl. Surf. Sci., 567, 150843 (2021). DOI: 10.1016/j.apsusc.2021.150843
  53. D.V. Sorokin, D.A. Shatilov, V.A. Andryushchenko, M.S. Makarov, V.S. Naumkin, D.V. Smovzh. Thermophys. Aerom., 29 (6), 899 (2022). DOI: 10.1134/S0869864322060099
  54. W. Xu, Yu. Song, R.X. Xu, Z. Wang. Adv. Mater. Interf., 8 (2), 2000670 (2021). DOI: 10.1002/admi.202000670
  55. M. Lizee, A. Marcotte, B. Coquinot, N. Kavokine, K. Sobnath, C. Barraud, A. Bhardwaj, B. Radha, A. Nigu\`es, L. Bocquet, A. Siria. Phys. Rev. X, 13 (1), 011020 (2022). DOI: 10.1103/PhysRevX.13.011020
  56. J.T. Wen, C.M. Ho, P.B. Lillehoj. Langmuir, 29 (26), 8440 (2013). DOI: 10.1021/la400224a
  57. J.M. Cameron, H.J. Butler, D.S. Palmer, M.J. Baker. J. Biophotonics, 11 (4), e201700299 (2018). DOI: 10.1002/jbio.201700299
  58. I.A. Kostogrud, E.V. Boyko, D.V. Smovzh. Mater. Chem. Phys., 219, 67 (2018). DOI: 10.1016/j.matchemphys.2018.08.001
  59. V.A. Andryushchenko, D.V. Sorokin, I.A. Betke, S.V. Komlina, S.V. Starinskiy, M.M. Vasiliev, E.A. Maximovskiy, M.N. Khomyakov, D.V. Smovzh. J. Mol. Liqu., 395, 123827 (2024). DOI: 10.1016/j.molliq.2023.123827
  60. S. Herminghaus, M. Brinkmann, R. Seemann. Annu. Rev. Mater. Res., 38 (1), 101 (2008). DOI: 10.1146/annurev.matsci.38.060407.130335
  61. D.N. Staicopolus. J. Colloid Sci., 17 (5), 439 (1962). DOI: 10.1016/0095-8522(62)90055-7
  62. C.A. Schneider, W.S. Rasband, K.W. Eliceiri. Nat. Meth., 9 (7), 671 (2012). DOI: 10.1038/nmeth.2089

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru