Stages of the synthesis of carbon dots from citric acid and ethylenediamine: IR spectroscopy
Vervald A. M. 1, Laptinskiy K. A. 2, Khmeleva M. Yu. 1, Dolenko T. A. 1
1Department of Physics, Lomonosov Moscow State University, Moscow, Russia
2Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Email: alexey.vervald@physics.msu.ru

PDF
Carbon dots synthesized by the hydrothermal method from citric acid and ethylenediamine have a luminescence quantum yield that significantly depends on the synthesis conditions and, under certain synthesis parameters, reaches more than 90%. To clarify the reasons for the dependence of the optical properties of carbon dots on the synthesis parameters, it is necessary to understand how their structure changes. For this purpose, in this paper we studied the relationship between structural changes and optical properties of carbon dots at different stages of their hydrothermal synthesis from a mixture of citric acid and ethylenediamine in a ratio of 1:1, achieved in 3 h of synthesis at a temperature varying from 80 to 200 oC with a step of 20 oC. As a result of the studies, the temperature boundaries of the stages of synthesis of carbon dots and changes in their structural and optical properties were determined: the beginning of the synthesis of luminescent structures; stage of active dehydration and carbonization of carbon dots with a concomitant increase in the number of both luminescent and non-luminescent chromophore structures; continuation of carbonization leading to the gradual destruction of luminescent structures. The change in chemical bonds in the reaction products during the synthesis process as the temperature increases is analyzed. Keywords: photoluminescence, luminophores, spectroscopy, hydrothermal synthesis.
  1. X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens. J. Am. Chem. Soc., 126, 12736 (2004). DOI: 10.1021/ja040082h
  2. S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang. Nano Res., 8, 355 (2015). DOI: 10.1007/s12274-014-0644-3
  3. C. Xia, S. Zhu, T. Feng, M. Yang, B. Yang. Adv. Sci., 6, 1901316 (2019). DOI: 10.1002/advs.201901316
  4. D. Ozyurt, M.A. Kobaisi, R.K. Hocking, B. Fox. Carbon Trends, 12, 100276 (2023). DOI: 10.1016/j.cartre.2023.100276
  5. H. Liu, X. Zhong, Q. Pan, Y. Zhang, W. Deng, G. Zou, H. Hou, X. Ji. Coord. Chem. Rev., 498, 215468 (2024). DOI: 10.1016/j.ccr.2023.215468
  6. N.A. Nazibudin, M.F. Zainuddin, C.A.C. Abdullah. J. Adv. Res. Fluid Mech. Therm. Sci., 101, 192 (2023). DOI: 10.37934/arfmts.101.1.192206
  7. M.A. Sk, A. Ananthanarayanan, L. Huang, K.H. Lim, P. Chen. J. Mater. Chem. C, 2, 6954 (2014). DOI: 10.1039/C4TC01191K
  8. Y. Zhang, R. Yuan, M. He, G. Hu, J. Jiang, T. Xu, L. Zhou, W. Chen, W. Xiang, X. Liang. Nanoscale, 9, 17849 (2017). DOI: 10.1039/C7NR05363K
  9. H. Zhang, J. You, J. Wang, X. Dong, R. Guan, D. Cao. Dyes Pigm., 173, 107950 (2020). DOI: 10.1016/j.dyepig.2019.107950
  10. X.-J. Xu, S. Ge, D.-Q. Li, Z.-Q. Xu, E.-J. Wang, S.-M. Wang. Chin. J. Anal. Chem., 50, 103 (2022). DOI: 10.1016/j.cjac.2021.09.005
  11. A.M. Vervald, K.A. Laptinskiy, G.N. Chugreeva, S.A. Burikov, T.A. Dolenko. J. Phys. Chem. C, 127, 21617 (2023). DOI: 10.1021/acs.jpcc.3c05231
  12. M.Yu. Khmeleva, K.A. Laptinskiy, T.A. Dolenko. Opt. i spektr., 131, 797 (2023) (in Russian). DOI: 10.21883/OS.2023.06.55913.104-23, [M.Yu. Khmeleva, K.A. Laptinskiy, T.A. Dolenko. Opt. Spectr., 6, 752 (2023). DOI: 10.61011/EOS.2023.06.56662.104-23]
  13. A.M. Vervald, A.D. Salekhov, T.A. Dolenko. J. Sib. Fed. Univ. Math. Phys., 15 (6), 710 (2022). DOI: 10.17516/1997-1397-2022-15-6-710-717
  14. M. Jorns, D. Pappas. Nanomater., 11, 1448 (2021). DOI: 10.3390/nano11061448
  15. B.D. Mansuriya, Z. Altintas. Nanomater., 11, 2525 (2021). DOI: 10.3390/nano11102525
  16. N.A.S. Omar, Y.W. Fen, R. Irmawati, H.S. Hashim, N.S.M. Ramdzan, N.I.M. Fauzi. Nanomater., 12, 2365 (2022). DOI: 10.3390/nano12142365
  17. J. Ren, L. Malfatti, P. Innocenzi. C, 7, 2 (2020). DOI: 10.3390/c7010002
  18. D. Qu, M. Zheng, L. Zhang, H. Zhao, Z. Xie, X. Jing, R.E. Haddad, H. Fan, Z. Sun. Sci. Rep., 4, 5294 (2014). DOI: 10.1038/srep05294
  19. Y. Song, S. Zhu, S. Zhang, Y. Fu, L. Wang, X. Zhao, B. Yang. J. Mater. Chem. C, 3, 5976 (2015). DOI: 10.1039/C5TC00813A
  20. S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang. Angew. Chem. Int. Ed., 52, 3953 (2013). DOI: 10.1002/anie.201300519
  21. M. Zhang, X. Long, Y. Ma, S. Wu. Opt. Mater., 135, 113311 (2023). DOI: 10.1016/j.optmat.2022.113311
  22. P. Duan, B. Zhi, L. Coburn, C.L. Haynes, K. Schmidt-Rohr. Magn. Reson. Chem., 58, 1130 (2020). DOI: 10.1002/mrc.4985
  23. J. Manioudakis, F. Victoria, C.A. Thompson, L. Brown, M. Movsum, R. Lucifero, R. Naccache. J. Mater. Chem. C, 7, 853 (2019). DOI: 10.1039/C8TC04821E
  24. S. Rodri guez-Varillas, T. Fontanil, A.J. Obaya, A. Fernandez-Gonzalez, C. Murru, R. Badi a-La. Appl. Sci., 12, 773 (2022). DOI: 10.3390/app12020773
  25. N. Papaioannou, M.-M. Titirici, A. Sapelkin. ACS Omega, 4, 21658 (2019). DOI: 10.1021/acsomega.9b01798
  26. S. Tao, T. Feng, C. Zheng, S. Zhu, B. Yang, J. Phys. Chem. Lett., 10, 5182 (2019). DOI: 10.1021/acs.jpclett.9b01384
  27. Y. Hu, J. Yang, J. Tian, J.-S. Yu. J. Mater. Chem. B, 3, 5608 (2015). DOI: 10.1039/C5TB01005E
  28. L. Ai, Y. Yang, B. Wang, J. Chang, Z. Tang, B. Yang, S. Lu. Sci. Bull., 66, 839 (2021). DOI: 10.1016/j.scib.2020.12.015
  29. A.M. Vervald, K.A. Lapinsky, M.Yu. Khmelyova, T.A. Dolenko Opt. i spectrosc., 132 (3), 11 (2024) (in Russian). DOI: 10.61011/OS.2024.03.58140.24-24
  30. J.R. Lakowicz. ed. Principles of Fluorescence Spectroscopy (Springer, US, 2006), DOI: 10.1007/978-0-387-46312-4
  31. A.M. Vervald, A.V. Lachko, O.S. Kudryavtsev, O.A. Shenderova, S.V. Kuznetsov, I.I. Vlasov, T.A. Dolenko. J. Phys. Chem. C, 125, 18247 (2021). DOI: 10.1021/acs.jpcc.1c03331
  32. D.J. Pochapski, C. Carvalho dos Santos, G.W. Leite, S.H. Pulcinelli, C.V. Santilli. Langmuir, 37, 13379 (2021). DOI: 10.1021/acs.langmuir.1c02056
  33. T. Fiuza, G. Gomide, A.F.C. Campos, F. Messina. J. Depeyrot, C, 5, 74 (2019). DOI: 10.3390/c5040074
  34. A.N. Emam, S.A. Loutfy, A.A. Mostafa, H. Awad, M.B. Mohamed. RSC Adv., 7, 23502 (2017). DOI: 10.1039/C7RA01423F
  35. G. Socrates. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 3rd ed. (University of West London, Middlesex, UK., 2001)
  36. R. Ludmerczki, S. Mura, C.M. Carbonaro, I.M. Mandity, M. Carraro, N. Senes, S. Garroni, G. Granozzi, L. Calvillo, S. Marras, L. Malfatti, P. Innocenzi. Chem. Eur. J., 25, 11963 (2019). DOI: 10.1002/chem.201902497
  37. B.C. Smith. Spectroscopy, 31 (11), 28 (2016)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru