Effect of nanodiamonds with different surface states on ion channel packing and proton conductivity of composite perfluorosulfone membranes
Lebedev V.T. 1, Kulvelis Yu. V. 1, Primachenko O. N. 2, A. S. Odinokov3, Marinenko E. A. 2, Shvidchenko A. V. 4, A.I. Kuklin5, O.I. Ivankov5
1Konstantinov Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina, Russia
2Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
3Russian Scientific Center "Applied Chemistry", St. Petersburg, Russia
4Ioffe Institute, St. Petersburg, Russia
5Frank Neutron Physics Laboratory, Joint Nuclear Research Institute, Dubna, Moscow oblast, Russia
Email: lebedev_vt@pnpi.nrcki.ru, kulvelis_yv@pnpi.nrcki.ru, alex-prima@mail.ru, emarinenkospb@gmail.com, avshvid@mail.ioffe.ru

PDF
A copolymer of the AquivionoledR type was modified with detonation diamonds (size 4-5 nm, concentration 0.25-5.0 wt.%) and studied using neutron scattering, measuring the packing period of ion channels in the matrix. Positively charged diamonds with a hydrogen-saturated surface at a concentration of 0.5 wt.% provided a 30 % increase in the ionic conductivity of the membranes at a temperature of 50 oC due to compaction of the packing of channel assemblies. Due to the electrostatic attraction of the components, a more developed conductive diamond-copolymer interface was created in such membranes than in composites with negatively charged ionic groups of the components. When the matrix was filled with hydrophobic fluorinated diamonds (1 wt.%), a fivefold decrease in ionic conductivity was observed due to the disruption of the connectivity of ion channels. The found correlations between the structure and ionic conductivity of the composites depending on the type and amount of filler are important for the targeted formation of membranes upon modification with nanoparticles. Keywords: membranes, diamonds, conductivity, structure.
  1. J.-H. Kim, S.-K. Kim, K. Nam, D.-W. Kim. J. Membrane Sci., 415--416, 696 (2012). DOI: 10.1016/j.memsci.2012.05.057
  2. K. Li, G. Ye, J. Pan, H. Zhang, M. Pan. J. Membrane Sci., 347 (1-2), (2010). https://doi.org/10.1016/j.memsci.2009.10.002
  3. D. Choi. Membranes, 12, 680 (2022). https://doi.org/10.3390/membranes12070680
  4. A.K. Sahu, S. Pitchumani, P. Sridhar, A.K. Shukla. Bull. Mater. Sci., 32 (3), 285 (2009)
  5. A.C. Brown, J.J. Hargreaves. Green Chem., 1 (1), 17 (1999)
  6. Y. Lu, Y. Yang, A. Sellinger, M. Lu, J. Huang, H. Fan, R. Haddad, G. Lopez, A.R. Burns, D.Y. Sasaki. Nature, 410 (6831), 913 (2001)
  7. T. Hao-lin, P. Mu, M. Shi-chun, Y. Run-zhang. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 19, 7 (2004). https://doi.org/10.1007/BF02835048
  8. N.H. Jalani, K. Dunn, R. Datta. Electrochim. Acta, 51 (3), 553 (2005)
  9. E. Chalkova, M.B. Pague, M.V. Fedkin, D.J. Wesolowski, S.N. Lvov. J. Electrochem. Society, 152 (6), A1035 (2005)
  10. K.T. Adjemian, R. Dominey, L. Krishnan, H. Ota, P. Majsztrik, T. Zhang, J. Mann, B. Kirby, L. Gatto, M. Velo-Simpson. Chem. Mater., 18 (9), 2238 (2006)
  11. Z. Chen, B. Holmberg, W. Li, X. Wang, W. Deng, R. Munoz, Y. Yan. Chem. Mater., 18 (24), 5669 (2006)
  12. S. Licoccia, E. Traversa. J. Power Sources, 159 (1), 12 (2006)
  13. S. Simonov, M.S. Kondratenko, I.V. Elmanovich, V.E. Sizov, E.P. Kharitonova, S.S. Abramchuk, A.Yu. Nikolaev, D.A. Fedosov, M.O. Gallyamov, A.R. Khokhlov. J. Membr. Sci., 564, 106 (2018). https://doi.org/10.1016/j.memsci.2018.06.042
  14. T. Hao-lin, P. Mu, M. Shi-Chun, Y. Run-Zhang. Chin. J. Inorg. Chem., 20 (2), 128 (2004)
  15. M.A. Zulfikar, A.W. Mohammad, N. Hilal. Desalination, 192 (1-3), 262 (2006)
  16. W. Jia, K. Feng, B. Tang, P. Wu. J. Mater. Chem. A, 3, 15607 (2015). https://doi.org/10.1039/C5TA03381K
  17. S. Lu, D. Wang, S.P. Jiang, Y. Xiang, J. Lu, J. Zeng. Adv. Mater., 22 (9), 971 (2010)
  18. C.-C. Yang, Y.J. Li, T.-H. Liou. Desalination, 276 (1), 366 (2011)
  19. Sujie Xing, He Xu, Junshui Chen, Guoyue Shi, Litong Jin. J. Electroanal. Chem., 652 (1-2), 60 (2011)
  20. M.R.H. Siddiqui, A.I. Al-Wassil, A.M. Al-Otaibi, R.M. Mahfouz. Mater. Res., 15 (6), 986 (2012)
  21. S. Liu, J. Yu, Y. Hao, F. Gao, M. Zhou, L. Zhao. Hindawi Intern. J. Polym. Sci., 2024, 630992 (2024). https://doi.org/10.1155/2024/6309923
  22. D. Yuan, Z. Liu, S.W. Tay, X. Fan, X. Zhang, C. He. Chem. Commun., 49, 9639 (2013). https://doi.org/10.1039/C3CC45138K
  23. A.H. Tian, J.-Y. Kim, J.Y. Shi, K. Kim, K. Lee. J. Power Sour., 167, 302 (2007). https://doi.org/10.1016/j.jpowsour.2007.02.074
  24. M.V. Lebedeva, A.V. Ragutkin, A.P. Antropov, N.A. Yashtulov. IOP Conf. Series: Mater. Sci. Engineer., 744, 012007 (2020). DOI: 10.1088/1757-899X/744/1/012007
  25. R. Singwadi, M. Dhlamini, T. Mokrani, F. Nemavhola. Digest J. Nanomater. Biostructures, 12 (4), 1137 (2017)
  26. Z. Chen, B. Holmberg, W. Li, X. Wang, W. Deng, R. Munoz, Y. Yan. Chem. Mater., 18 (24), 5669 (2006)
  27. E.N. Karaulova, E.I. Bagry. Usp. khim., 68, 11 (979). (in Russian). DOI: https://doi.org/10.1070/RC1999v068n11ABEH000499
  28. T.P. Dyachkova, A.G. Tkachev Metody funktsionalizatsii i modifitsirobaniya uglerodnykh nanotrubok (Izdat dom Spektr, M., 2013) 152 s. ISBN 978-5-4442-0050-6 (in Russian)
  29. A.E. Aleksenskii. Thechnology of preparation of detonation nanodiamond, in A.Y. Vul, O.A. Shenderova (ed). Detonation nanodiamonds. Science and Applications (Pan Stanford Publishing: Danvers, MA, USA, 2014), p. 37--72
  30. A. Aleksenskii, M. Bleuel, A. Bosak, A. Chumakova, A. Dideikin, M. Dubois, E. Korobkina, E. Lychagin, A. Muzychka, G. Nekhaev et al. Nanomaterials, 11, 1945 (2021)
  31. O.V. Tomchuk, V. Ryukhtin, O. Ivankov, A.Ya. Vul, A.E. Aleksenskii, L.A. Bulavin. Fuller. Nanotub. Carbon Nanostructur., 28, 272 (2020)
  32. A.V. Petrov, K.N. Semenov, I.V. Murin. Russ. J. Gen. Chem., 90, 927 (2020)
  33. I.I. Kulakova, G.V. Lisichkin. ZhOKh, 90 (10), 1601 (2020) (in Russian) DOI: 10.31857/S0044460X20100157
  34. D. Chen, H. Feng, J. Li. Chem. Rev., 112 (11), 6027 (2012). https://doi.org/10.1021/cr300115g
  35. D.V. Postnov, N.A. Melnikova, V.N. Postnov, K.N. Semenov, I.V. Murin. Rev. Adv. Mater. Sci., 39, 20 (2014)
  36. S.F. Nitodas, M. Das, R. Shah. Membranes, 12, 454 (2022). https://doi.org/10.3390/membranes12050454
  37. V.N. Postnov, N.A. Melnikova, G.A. Shulmeister, A.G. Novikov, I.V. Murin, A.N. Zhukov. Russ. J. Gen. Chem., 87, 2754 (2017)
  38. A.B. Yaroslavtsev, I.A. Stenina. Mendeleev Commun., 31, 423 (2021)
  39. A.B. Yaroslavtsev, I.A. Stenina, D.V. Golubenko. Pure Appl. Chem., 92, 1147 (2020)
  40. O.N. Primachenko, Yu.V. Kulvelis, V.T. Lebedev, A.S. Odinokov, V.Yu. Bayramukov, E.A. Marinenko, I.V. Gofman, A.V. Shvidchenko, A.Ya. Vul, S.S. Ivanchev. Membranes Membrane Technol., 2 (1), 1 (2020)
  41. Y.-L. Liu, Y.-H. Su, C.-M. Chang, Suryani, D.-M. Wang, J.-Y. Lai. J. Mater. Chem., 20, 4409 (2010). https://doi.org/10.1039/C000099J
  42. M.S. Asgari, M. Nikazar, P. Molla-abbasi, M.M. Hasani-Sadrabadi. Intern. J. Hydrogen Energy, 38 (14), 5894 (2013). https://doi.org/10.1016/j.ijhydene.2013.03.010
  43. A.O. Krasnova, N.V. Glebova, A.G. Kastsova, M.K. Rabchinskii, A.A. Nechitailov. Polymers (Basel), 15 (9), 2070 (2023). DOI: 10.3390/polym15092070
  44. M. Vinothkannan, A.R. Kim, G. Gnana kumar, D.J. Yoo. RSC Adv., 8, 7494 (2018). https://doi.org/10.1039/C7RA12768E
  45. M. Vinothkannan, A.R. Kim, D.J. Yoo. RSC Adv., 11, 18351 (2021). DOI: 10.1039/D1RA00685A
  46. A.V. Shvidchenko, A.S. Odinokov, O.N. Primachenko, I.V. Gofman, N.P. Yevlampieva, E.A. Marinenko, V.T. Lebedev, A.I. Kuklin, Y.V. Kulvelis. Membranes, 13, 712 (2023). https://doi.org/10.3390/membranes13080712
  47. Yu.V. Kulvelis, O.N. Primachenko, I.F. Gofman, A.S. Odinokov, A.V. Shvidchenko, E.B. Yudina, E.A. Marinenko, V.T. Lebedev, A.Ya. Vul'. Izv. AN, ser. khim. 9, 1713 (2021) (in Russian)
  48. O.N. Primachenko, E.A. Marinenko, A.S. Odinokov, S.V. Kononova, Yu.V. Kulvelis, V.T. Lebedev. Polymer. Adv. Technol., 32 (4), 1386 (2021). https://doi.org/10.1002/pat.5191
  49. W.Y. Hsu, T.D. Gierke. J. Membr. Sci., 13, 307 (1983)
  50. A. Eisenberg. Macromolecules, 3, 147 (1970). https://doi.org/10. 1021/ma60014a006
  51. A. Eisenberg, B. Hird, R.B. Moore. Macromolecules, 23, 4098 (1990). https://doi.org/10.1021/ma00220a012
  52. M. Fujimura, T. Hashimoto, H. Kawai. Macromolecules, 15, 136 (1982). https://doi.org/10.1021/ma00229a028
  53. G. Gebel. Macromolecules, 33, 4850 (2000). https://doi.org/10.1021/ma9912709
  54. A.-L. Rollet, O. Diat, G. Gebel. J. Phys. Chem. B, 106, 3033 (2002). https://doi.org/10.1021/jp020245t
  55. L. Rubatat, G. Gebel, O. Diat. Macromolecules, 37, 7772 (2004). https://doi.org/10.1021/ma049683j
  56. G. Gebel, O. Diat. Fuel Cells, 5, 261 (2005). https://doi.org/10.1002/fuce200400080
  57. M.H. Kim, C.J. Glinka, S.A. Grot, W.G. Grot. Macromolecules, 39, 4775 (2006). https://doi.org/10.1021/ma060576u
  58. K. Schmidt-Rohr, Q. Chen. Nat Mater., 7, 75 (2008). https://doi. org/10.1038/nmat2074
  59. K.-D. Kreuer. Chem. Mater., 26, 361 (2014). https://doi. org/10.1021/cm402742u
  60. K.-D. Kreuer, G. Portale. Adv. Funct. Mater., 23, 5390 (2013). https://doi.org/10.1002/adfm.201300376
  61. J.A. Elliott, D. Wu, S.J. Paddison, R.B. Moore. Soft Matter., 7, 6820 (2011). https://doi.org/10.1039/c1sm00002k
  62. V.T. Lebedev, Yu.V. Kulvelis, A.V. Shvidchenko, O.N. Primachenko, A.S. Odinokov, E.A. Marinenko, A.I. Kuklin, O.I. Ivankov. Membranes, 13, 850 (2023). https://doi.org/10.3390/membranes13110850
  63. O.N. Primachenko, A.S. Odinokov, E.A. Marinenko, Yu.V. Kulvelis, V.G. Barabanov, S.V. Kononova. J. Fluor. Chem., 244, 109736 (2021). http://doi.org/10.1016/j.jfluchem.2021.109736
  64. O. Williams, J. Hees, C. Dieker, W. Jager, L. Kirste, C.E. Nebel. ACS Nano, 4, 4824 (2010)
  65. A.E. Aleksenskii, E.D. Eydelman, A.Ya. Vul. Nanotechnol. Lett., 3, 68 (2011)
  66. A.Ya. Vul, A.T. Dideikin, A.E. Aleksenskiy, M.V. Baidakova. Detonation nanodiamonds. Synthesis, properties and applications, in: O.A. Williams (ed), Nanodiamond, RSC Nanoscience and Nanotechnology (Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK, 2014)
  67. A. Aleksenskii, M. Bleuel, A. Bosak, A. Chumakova, A. Dideikin, M. Dubois, E. Korobkina, E. Lychagin, A. Muzychka, G. Nekhaev et al. Nanomaterials, 11, 3067 (2021). https://doi.org/10.3390/nano11113067
  68. V.V. Nesvizhevsky, U. Koester, M.Dubois, N. Batisse, L. Frezet, A. Bosak, L. Gines, O. Williams. Carbon, 130, 799 (2018)
  69. O.N. Primachenko, A.S.Odinokov, V.G. Barabanov, V.P. Tyulmankov, E.A. Marinenko, I.V. Gofman, S.S. Ivanchev. ZhPKh, 91, 110 (2018) (in Russian)
  70. A.I. Kuklin, A.I. Ivankov, D.V. Soloviov, A.V. Rogachev, Y.S. Kovalev, A.G. Soloviev, A.K. Islamov, M. Balasoiu, A.V. Vlasov, S.A. Kutuzov. J. Phys. Conf. Ser., 994, 012016 (2018). http://doi.org/10.1088/1742-6596/994/1/012016
  71. A.I. Kuklin, O.I. Ivankov, A.V. Rogachev, D.V. Soloviov, A.Kh. Islamov, V.V. Skoi, Yu.S. Kovalev, A.V. Vlasov, Yu.L. Ryzhykau, A.G. Soloviev, N. Kucerka, V.I. Gordeliy. Crystallogr. Rep., 66, 231 (2021). http://doi.org/10.1134/S1063774521020085
  72. A.G. Soloviev, T.M. Solovjeva, O.I. Ivankov, D.V. Soloviov, A.V. Rogachev, A.I. Kuklin. J. Phys.: Conf. Ser., 848, 012020 (2017). https://doi.org/10.1088/1742-6596/848/1/012020
  73. D.I. Svergun, L.A. Feigin. Structure Analysis by Small-Angle X-Ray and Neutron Scattering (Plenum Press, NY. \& London, 1987)
  74. O.V. Tomchuk, D.S. Volkov, L.A. Bulavin, A.V. Rogachev, M.A. Proskurnin, M.V. Korobov, M.V. Avdeev. J. Phys. Chem. C, 119, 794 (2015)
  75. V.T. Lebedev, Yu.V. Kulvelis, A.I. Kuklin, A.Ya. Vul. Condens. Matter., 1 (10), 1 (2016). DOI: 10.3390/condmat1010010
  76. O.N. Primachenko, Yu.V. Kulvelis, A.S. Odinokov, N.V. Glebova, A.O. Krasnova, L.A. Antokolskiy, A.A. Nechitailov, A.V. Shvidchenko, I.V. Gofman, E.A. Marinenko, N.P. Yevlampieva, V.T. Lebedev, A.I. Kuklin. Membranes, 12 (9), 827 (2022). https://doi.org/10.3390/membranes12090827

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru