Effect of nanodiamonds with different surface states on ion channel packing and proton conductivity of composite perfluorosulfone membranes
Lebedev V.T.
1, Kulvelis Yu. V.
1, Primachenko O. N.
2, A. S. Odinokov
3, Marinenko E. A.
2, Shvidchenko A. V.
4, A.I. Kuklin
5, O.I. Ivankov
51Konstantinov Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina, Russia
2Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
3Russian Scientific Center "Applied Chemistry", St. Petersburg, Russia
4Ioffe Institute, St. Petersburg, Russia
5Frank Neutron Physics Laboratory, Joint Nuclear Research Institute, Dubna, Moscow oblast, Russia
Email: lebedev_vt@pnpi.nrcki.ru, kulvelis_yv@pnpi.nrcki.ru, alex-prima@mail.ru, emarinenkospb@gmail.com, avshvid@mail.ioffe.ru
A copolymer of the AquivionoledR type was modified with detonation diamonds (size 4-5 nm, concentration 0.25-5.0 wt.%) and studied using neutron scattering, measuring the packing period of ion channels in the matrix. Positively charged diamonds with a hydrogen-saturated surface at a concentration of 0.5 wt.% provided a 30 % increase in the ionic conductivity of the membranes at a temperature of 50 oC due to compaction of the packing of channel assemblies. Due to the electrostatic attraction of the components, a more developed conductive diamond-copolymer interface was created in such membranes than in composites with negatively charged ionic groups of the components. When the matrix was filled with hydrophobic fluorinated diamonds (1 wt.%), a fivefold decrease in ionic conductivity was observed due to the disruption of the connectivity of ion channels. The found correlations between the structure and ionic conductivity of the composites depending on the type and amount of filler are important for the targeted formation of membranes upon modification with nanoparticles. Keywords: membranes, diamonds, conductivity, structure.
- J.-H. Kim, S.-K. Kim, K. Nam, D.-W. Kim. J. Membrane Sci., 415--416, 696 (2012). DOI: 10.1016/j.memsci.2012.05.057
- K. Li, G. Ye, J. Pan, H. Zhang, M. Pan. J. Membrane Sci., 347 (1-2), (2010). https://doi.org/10.1016/j.memsci.2009.10.002
- D. Choi. Membranes, 12, 680 (2022). https://doi.org/10.3390/membranes12070680
- A.K. Sahu, S. Pitchumani, P. Sridhar, A.K. Shukla. Bull. Mater. Sci., 32 (3), 285 (2009)
- A.C. Brown, J.J. Hargreaves. Green Chem., 1 (1), 17 (1999)
- Y. Lu, Y. Yang, A. Sellinger, M. Lu, J. Huang, H. Fan, R. Haddad, G. Lopez, A.R. Burns, D.Y. Sasaki. Nature, 410 (6831), 913 (2001)
- T. Hao-lin, P. Mu, M. Shi-chun, Y. Run-zhang. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 19, 7 (2004). https://doi.org/10.1007/BF02835048
- N.H. Jalani, K. Dunn, R. Datta. Electrochim. Acta, 51 (3), 553 (2005)
- E. Chalkova, M.B. Pague, M.V. Fedkin, D.J. Wesolowski, S.N. Lvov. J. Electrochem. Society, 152 (6), A1035 (2005)
- K.T. Adjemian, R. Dominey, L. Krishnan, H. Ota, P. Majsztrik, T. Zhang, J. Mann, B. Kirby, L. Gatto, M. Velo-Simpson. Chem. Mater., 18 (9), 2238 (2006)
- Z. Chen, B. Holmberg, W. Li, X. Wang, W. Deng, R. Munoz, Y. Yan. Chem. Mater., 18 (24), 5669 (2006)
- S. Licoccia, E. Traversa. J. Power Sources, 159 (1), 12 (2006)
- S. Simonov, M.S. Kondratenko, I.V. Elmanovich, V.E. Sizov, E.P. Kharitonova, S.S. Abramchuk, A.Yu. Nikolaev, D.A. Fedosov, M.O. Gallyamov, A.R. Khokhlov. J. Membr. Sci., 564, 106 (2018). https://doi.org/10.1016/j.memsci.2018.06.042
- T. Hao-lin, P. Mu, M. Shi-Chun, Y. Run-Zhang. Chin. J. Inorg. Chem., 20 (2), 128 (2004)
- M.A. Zulfikar, A.W. Mohammad, N. Hilal. Desalination, 192 (1-3), 262 (2006)
- W. Jia, K. Feng, B. Tang, P. Wu. J. Mater. Chem. A, 3, 15607 (2015). https://doi.org/10.1039/C5TA03381K
- S. Lu, D. Wang, S.P. Jiang, Y. Xiang, J. Lu, J. Zeng. Adv. Mater., 22 (9), 971 (2010)
- C.-C. Yang, Y.J. Li, T.-H. Liou. Desalination, 276 (1), 366 (2011)
- Sujie Xing, He Xu, Junshui Chen, Guoyue Shi, Litong Jin. J. Electroanal. Chem., 652 (1-2), 60 (2011)
- M.R.H. Siddiqui, A.I. Al-Wassil, A.M. Al-Otaibi, R.M. Mahfouz. Mater. Res., 15 (6), 986 (2012)
- S. Liu, J. Yu, Y. Hao, F. Gao, M. Zhou, L. Zhao. Hindawi Intern. J. Polym. Sci., 2024, 630992 (2024). https://doi.org/10.1155/2024/6309923
- D. Yuan, Z. Liu, S.W. Tay, X. Fan, X. Zhang, C. He. Chem. Commun., 49, 9639 (2013). https://doi.org/10.1039/C3CC45138K
- A.H. Tian, J.-Y. Kim, J.Y. Shi, K. Kim, K. Lee. J. Power Sour., 167, 302 (2007). https://doi.org/10.1016/j.jpowsour.2007.02.074
- M.V. Lebedeva, A.V. Ragutkin, A.P. Antropov, N.A. Yashtulov. IOP Conf. Series: Mater. Sci. Engineer., 744, 012007 (2020). DOI: 10.1088/1757-899X/744/1/012007
- R. Singwadi, M. Dhlamini, T. Mokrani, F. Nemavhola. Digest J. Nanomater. Biostructures, 12 (4), 1137 (2017)
- Z. Chen, B. Holmberg, W. Li, X. Wang, W. Deng, R. Munoz, Y. Yan. Chem. Mater., 18 (24), 5669 (2006)
- E.N. Karaulova, E.I. Bagry. Usp. khim., 68, 11 (979). (in Russian). DOI: https://doi.org/10.1070/RC1999v068n11ABEH000499
- T.P. Dyachkova, A.G. Tkachev Metody funktsionalizatsii i modifitsirobaniya uglerodnykh nanotrubok (Izdat dom Spektr, M., 2013) 152 s. ISBN 978-5-4442-0050-6 (in Russian)
- A.E. Aleksenskii. Thechnology of preparation of detonation nanodiamond, in A.Y. Vul, O.A. Shenderova (ed). Detonation nanodiamonds. Science and Applications (Pan Stanford Publishing: Danvers, MA, USA, 2014), p. 37--72
- A. Aleksenskii, M. Bleuel, A. Bosak, A. Chumakova, A. Dideikin, M. Dubois, E. Korobkina, E. Lychagin, A. Muzychka, G. Nekhaev et al. Nanomaterials, 11, 1945 (2021)
- O.V. Tomchuk, V. Ryukhtin, O. Ivankov, A.Ya. Vul, A.E. Aleksenskii, L.A. Bulavin. Fuller. Nanotub. Carbon Nanostructur., 28, 272 (2020)
- A.V. Petrov, K.N. Semenov, I.V. Murin. Russ. J. Gen. Chem., 90, 927 (2020)
- I.I. Kulakova, G.V. Lisichkin. ZhOKh, 90 (10), 1601 (2020) (in Russian) DOI: 10.31857/S0044460X20100157
- D. Chen, H. Feng, J. Li. Chem. Rev., 112 (11), 6027 (2012). https://doi.org/10.1021/cr300115g
- D.V. Postnov, N.A. Melnikova, V.N. Postnov, K.N. Semenov, I.V. Murin. Rev. Adv. Mater. Sci., 39, 20 (2014)
- S.F. Nitodas, M. Das, R. Shah. Membranes, 12, 454 (2022). https://doi.org/10.3390/membranes12050454
- V.N. Postnov, N.A. Melnikova, G.A. Shulmeister, A.G. Novikov, I.V. Murin, A.N. Zhukov. Russ. J. Gen. Chem., 87, 2754 (2017)
- A.B. Yaroslavtsev, I.A. Stenina. Mendeleev Commun., 31, 423 (2021)
- A.B. Yaroslavtsev, I.A. Stenina, D.V. Golubenko. Pure Appl. Chem., 92, 1147 (2020)
- O.N. Primachenko, Yu.V. Kulvelis, V.T. Lebedev, A.S. Odinokov, V.Yu. Bayramukov, E.A. Marinenko, I.V. Gofman, A.V. Shvidchenko, A.Ya. Vul, S.S. Ivanchev. Membranes Membrane Technol., 2 (1), 1 (2020)
- Y.-L. Liu, Y.-H. Su, C.-M. Chang, Suryani, D.-M. Wang, J.-Y. Lai. J. Mater. Chem., 20, 4409 (2010). https://doi.org/10.1039/C000099J
- M.S. Asgari, M. Nikazar, P. Molla-abbasi, M.M. Hasani-Sadrabadi. Intern. J. Hydrogen Energy, 38 (14), 5894 (2013). https://doi.org/10.1016/j.ijhydene.2013.03.010
- A.O. Krasnova, N.V. Glebova, A.G. Kastsova, M.K. Rabchinskii, A.A. Nechitailov. Polymers (Basel), 15 (9), 2070 (2023). DOI: 10.3390/polym15092070
- M. Vinothkannan, A.R. Kim, G. Gnana kumar, D.J. Yoo. RSC Adv., 8, 7494 (2018). https://doi.org/10.1039/C7RA12768E
- M. Vinothkannan, A.R. Kim, D.J. Yoo. RSC Adv., 11, 18351 (2021). DOI: 10.1039/D1RA00685A
- A.V. Shvidchenko, A.S. Odinokov, O.N. Primachenko, I.V. Gofman, N.P. Yevlampieva, E.A. Marinenko, V.T. Lebedev, A.I. Kuklin, Y.V. Kulvelis. Membranes, 13, 712 (2023). https://doi.org/10.3390/membranes13080712
- Yu.V. Kulvelis, O.N. Primachenko, I.F. Gofman, A.S. Odinokov, A.V. Shvidchenko, E.B. Yudina, E.A. Marinenko, V.T. Lebedev, A.Ya. Vul'. Izv. AN, ser. khim. 9, 1713 (2021) (in Russian)
- O.N. Primachenko, E.A. Marinenko, A.S. Odinokov, S.V. Kononova, Yu.V. Kulvelis, V.T. Lebedev. Polymer. Adv. Technol., 32 (4), 1386 (2021). https://doi.org/10.1002/pat.5191
- W.Y. Hsu, T.D. Gierke. J. Membr. Sci., 13, 307 (1983)
- A. Eisenberg. Macromolecules, 3, 147 (1970). https://doi.org/10. 1021/ma60014a006
- A. Eisenberg, B. Hird, R.B. Moore. Macromolecules, 23, 4098 (1990). https://doi.org/10.1021/ma00220a012
- M. Fujimura, T. Hashimoto, H. Kawai. Macromolecules, 15, 136 (1982). https://doi.org/10.1021/ma00229a028
- G. Gebel. Macromolecules, 33, 4850 (2000). https://doi.org/10.1021/ma9912709
- A.-L. Rollet, O. Diat, G. Gebel. J. Phys. Chem. B, 106, 3033 (2002). https://doi.org/10.1021/jp020245t
- L. Rubatat, G. Gebel, O. Diat. Macromolecules, 37, 7772 (2004). https://doi.org/10.1021/ma049683j
- G. Gebel, O. Diat. Fuel Cells, 5, 261 (2005). https://doi.org/10.1002/fuce200400080
- M.H. Kim, C.J. Glinka, S.A. Grot, W.G. Grot. Macromolecules, 39, 4775 (2006). https://doi.org/10.1021/ma060576u
- K. Schmidt-Rohr, Q. Chen. Nat Mater., 7, 75 (2008). https://doi. org/10.1038/nmat2074
- K.-D. Kreuer. Chem. Mater., 26, 361 (2014). https://doi. org/10.1021/cm402742u
- K.-D. Kreuer, G. Portale. Adv. Funct. Mater., 23, 5390 (2013). https://doi.org/10.1002/adfm.201300376
- J.A. Elliott, D. Wu, S.J. Paddison, R.B. Moore. Soft Matter., 7, 6820 (2011). https://doi.org/10.1039/c1sm00002k
- V.T. Lebedev, Yu.V. Kulvelis, A.V. Shvidchenko, O.N. Primachenko, A.S. Odinokov, E.A. Marinenko, A.I. Kuklin, O.I. Ivankov. Membranes, 13, 850 (2023). https://doi.org/10.3390/membranes13110850
- O.N. Primachenko, A.S. Odinokov, E.A. Marinenko, Yu.V. Kulvelis, V.G. Barabanov, S.V. Kononova. J. Fluor. Chem., 244, 109736 (2021). http://doi.org/10.1016/j.jfluchem.2021.109736
- O. Williams, J. Hees, C. Dieker, W. Jager, L. Kirste, C.E. Nebel. ACS Nano, 4, 4824 (2010)
- A.E. Aleksenskii, E.D. Eydelman, A.Ya. Vul. Nanotechnol. Lett., 3, 68 (2011)
- A.Ya. Vul, A.T. Dideikin, A.E. Aleksenskiy, M.V. Baidakova. Detonation nanodiamonds. Synthesis, properties and applications, in: O.A. Williams (ed), Nanodiamond, RSC Nanoscience and Nanotechnology (Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK, 2014)
- A. Aleksenskii, M. Bleuel, A. Bosak, A. Chumakova, A. Dideikin, M. Dubois, E. Korobkina, E. Lychagin, A. Muzychka, G. Nekhaev et al. Nanomaterials, 11, 3067 (2021). https://doi.org/10.3390/nano11113067
- V.V. Nesvizhevsky, U. Koester, M.Dubois, N. Batisse, L. Frezet, A. Bosak, L. Gines, O. Williams. Carbon, 130, 799 (2018)
- O.N. Primachenko, A.S.Odinokov, V.G. Barabanov, V.P. Tyulmankov, E.A. Marinenko, I.V. Gofman, S.S. Ivanchev. ZhPKh, 91, 110 (2018) (in Russian)
- A.I. Kuklin, A.I. Ivankov, D.V. Soloviov, A.V. Rogachev, Y.S. Kovalev, A.G. Soloviev, A.K. Islamov, M. Balasoiu, A.V. Vlasov, S.A. Kutuzov. J. Phys. Conf. Ser., 994, 012016 (2018). http://doi.org/10.1088/1742-6596/994/1/012016
- A.I. Kuklin, O.I. Ivankov, A.V. Rogachev, D.V. Soloviov, A.Kh. Islamov, V.V. Skoi, Yu.S. Kovalev, A.V. Vlasov, Yu.L. Ryzhykau, A.G. Soloviev, N. Kucerka, V.I. Gordeliy. Crystallogr. Rep., 66, 231 (2021). http://doi.org/10.1134/S1063774521020085
- A.G. Soloviev, T.M. Solovjeva, O.I. Ivankov, D.V. Soloviov, A.V. Rogachev, A.I. Kuklin. J. Phys.: Conf. Ser., 848, 012020 (2017). https://doi.org/10.1088/1742-6596/848/1/012020
- D.I. Svergun, L.A. Feigin. Structure Analysis by Small-Angle X-Ray and Neutron Scattering (Plenum Press, NY. \& London, 1987)
- O.V. Tomchuk, D.S. Volkov, L.A. Bulavin, A.V. Rogachev, M.A. Proskurnin, M.V. Korobov, M.V. Avdeev. J. Phys. Chem. C, 119, 794 (2015)
- V.T. Lebedev, Yu.V. Kulvelis, A.I. Kuklin, A.Ya. Vul. Condens. Matter., 1 (10), 1 (2016). DOI: 10.3390/condmat1010010
- O.N. Primachenko, Yu.V. Kulvelis, A.S. Odinokov, N.V. Glebova, A.O. Krasnova, L.A. Antokolskiy, A.A. Nechitailov, A.V. Shvidchenko, I.V. Gofman, E.A. Marinenko, N.P. Yevlampieva, V.T. Lebedev, A.I. Kuklin. Membranes, 12 (9), 827 (2022). https://doi.org/10.3390/membranes12090827
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.