Non-empirical calculations of properties of KNbO3 and RbNbO3 crystals
Evarestov R.A.1, Novikov S.S.1,2
1St. Petersburg State University, St. Petersburg, Russia
2Grebenschikov Institute of Silicate Chemistry RAS, Saint-Petersburg, Russia
Email: r.evarestov@spbu.ru
The present study investigates the electronic and mechanical properties of potassium and rubidium niobates forming temperature-dependent lattices in cubic, tetragonal, orthorhombic or rhombohedral syngonies. The calculations are based on the framework of density functional theory (DFT) using the HSE06 functional. The dispersion curves for these perovskites were obtained, and it was found that in all phases except rhombohedral KNbO3 has imaginary modes, indicating the instability of the structures.However, for RbNbO3 such a picture was not observed, and except for the phase with cubic unit cell imaginary frequencies in the dispersion dependences were absent. The electronic bands, high-frequency dielectric permittivity, and lattice formation energy, along with other relevant properties, have been calculated for all phases of both RbNbO3 and KNbO3 crystals. Keywords: Rubidium niobate, potassium niobate, phase transitions, electronic and mechanical properties.
- M. Damnjanovic. Eur. J. Phys. 8, 1 (1987)
- R.A. Evarestov. Phys. Rev. B 83, 134108 (2011)
- S.L. Skj rv, K. H ydalsvik, A.B. Blichfeld, M.-A. Einarsrud, T.R. Grande. Soc. Open. Sci. 5, 180368 (2018)
- A.I. Lebedev. Phys. Solid State 57, 331 (2015)
- A. Yamamoto, K. Murase, T. Sato, K. Sugiyama, T. Kawamata, Y. Inaguma, J.I. Yamaura, K. Shitara, R. Yokoi, H. Moriwake. Dalton Trans. 53, 7044 (2024)
- M. Fukuda, K. Yamaura. J. Ceram.Soc. Jpn 131, 126 (2023)
- J. Heyd, G.E. Scuseria, M. Ernzerhof. J. Chem. Phys. 118, 8207 (2003)
- R. Dovesi, A. Erba, R. Orlando, C.M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rerat, S. Casassa, J. Baima, S. Salustro, B. Kirtman. Comput. Mol. Sci. 8, 1360 (2018)
- F. Schmidt, M. Landmann, E. Rauls, N. Argiolas, S. Sanna, W.G. Schmidt, A. Schindlmayr. Adv. Mater. Sci. Eng. 398, 1317 (2017)
- A. Dovesi, V.R.Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, P. D'Arco, M. Llunell, M. Causa, Y. Noel, L. Maschio, A. Erba, M. Rerat, S. Casassa, CRYSTAL17 User's Manual, University of Turin, Torino, Italy (2018)
- D.V. Oliveira, M.F. Peintinger, J. Laun, T. Bredow. J. Comput. Chem. 40, 2364 (2019)
- J. Laun, T. Bredow. J. Comput. Chem. 43, 839 (2022)
- H.J. Monkhorst, J.D. Pack. Phys. Rev. B 13, 5188 (1976)
- S. Grimme. J. Comput. Chem. 27, 1787 (2006)
- R.A. Evarestov, A.V. Bandura. J. Comput. Chem. 33, 1123 (2012)
- G. Kresse, J. Furthmuller. Comput. Mater. Sci. 6, 15 (1996)
- S. Simsek, H. Koc, V.A. Trepakov, A.M. Mamedov, E. Ozbay. Ferroelectrics, 461, 99 (2014)
- C.M.I. Okoye, J. Phys. Condens. Matter 15, 5945 (2003)
- M.A. Faridi, S. Tariq, M.I. Jamil, A. Batool, S. Nadeem, A. Amin. Chin. J. Phys. 56, 1481 (2018)
- F.M. Michel-calendini, L. Castet. Ferroelectrics 13, 367 (1976)
- S. Azam, M. Irfan, Z. Abbas, M. Rani, T. Saleem, D.A. Younus, N. Akhtar, B. Liaqat, M. Shabbir, H. Abdullah, G. Al-Sehemi. Dig. J. Nanomater. Biostructures 14, 751 (2019)
- K. Parlinski, Z.Q. Li, Y. Kawazoe. Phys. Rev. Lett. 78, 4063 (1997)
- R.A. Evarestov, M.V. Losev. J. Comput. Chem. 30, 2645 (2009)