Physics of the Solid State
Volumes and Issues
NMR of monoclinic silver sulfide α-Ag2S
Valeeva A.A.1, Михалев K.N.2, Suvorkova E.V.2, Sadovnikov S.I.1, Gusev A.I.1
1Institute of Solid State Chemistry, Russian Academy of Sciences, Ural Branch, Yekaterinburg, Russia
2M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
Email: valeevaar@mail.ioffe.ru

PDF
109Ag-NMR spectrometry was used to examine the structure of monoclinic α-Ag2S powder. It was found that the 109Ag-NMR spectrum of monoclinic α-Ag2S had a form of a single narrow line, whose width slightly varied with temperature within 85-295 K. At a temperature below 200 K, a considerable growth of the isotropic component of shift tensor Kiso of 109Ag nuclei is observed in the Ag2S powder. Abnormally short time T2 of 109Ag spin-spin relaxation was detected. Simulation shows that, besides the acanthite described in the literature, other Ag2S phases, that are derived from high-temperature argentite, β-Ag2S, and have different structures, may be formed in silver sulfide as the temperature decreases. It is shown that the band structure of all predicted model Ag2S phases has a band gap of 0.6-1.5 eV that is indicative of semiconductor properties of the phases. Keywords: silver sulfide, 109Ag isotope, isotropic shift, spin-spin relaxation time, predicted low-temperature Ag2S phases.
  1. A. Tang, Yu Wang, H. Ye, C. Zhou, C. Yang, X. Li, H. Peng, F. Zhang, Y. Hou, F. Teng. Nanotechnology 24, 35, 355602 (10) (2013). http://dx.doi.org/10.1088/0957-4484/24/35/355602
  2. S.I. Sadovnikov, A.I. Gusev. J. Mater. Chem. A 5, 34, 17676--17704 (2017). DOI: 10.1039/C7TA04949H
  3. S.I. Sadovnikov, A.A. Rempel, A.I. Gusev. Springer Intern. Publ. AG, Cham--Heidelberg (2018). 317 p
  4. R.C. Sharma, Y.A. Chang. The Ag-S (silver-sulfur) system. Bull. Alloy Phase Diagr. 7, 3, 263--269 (1986)
  5. R.C. Sharma, Y.A. Chang. Ag-S (Silver-Sulphur). In: Binary Alloy Phase Diagrams. Ed. T.B. Massalski, H. Okamoto, L. Kacprzak. Metals Park (Ohio, USA): ASM Intern. Publ. (1990). P. 86--87
  6. C.H. Liang, K. Terabe, T. Hasegawa, M. Aono. Nanotechnology 18, 48, 485202 (5) (2007). DOI: 10.1088/0957-4484/18/48/485202
  7. Z. Xu, Y. Bando, W. Wang, X. Bai, D. Golberg. ACS Nano 4, 5, 2515--2522 (2010). DOI: 10.1021/nn100483a
  8. M. Basu, R. Nazir, C. Mahala, P. Fageria, S. Chaudhary, S. Gangopadhyay, S. Pande. Langmuir 33, 13, 3178--3186 (2017). DOI: 10.1021/acs.langmuir.7b00029
  9. W. Yang, L. Zhang, Y. Hu, Y. Zhong, H.B. Wu, X.W. Lou. Angew. Chem. Int. Ed. 51, 46, 11501--11504 (2012). DOI: 10.1002/anie.201206715
  10. S. Kitova, J. Eneva, A. Panov, H. Haefke. J. Imaging Sci. Technol. 38, 5, 484--488 (1994)
  11. T. Minami. J. Non-Cryst. Solids 95--96, 1, 107--118 (1987). https://doi.org/10.1016/S0022-3093(87)80103-5
  12. S. Hull, D.A. Keen, D.S. Sivia, P.A. Madden, M. Wilson. J. Phys. Condens. Matter 14, 41, L9--L17 (2002). DOI: 10.1088/0953-8984/14/1/102
  13. W.P. Lim, Z. Zhang, H.Y. Low, W.S. Chin. Angew. Chem. Int. Ed. 43, 42, 5685--5689 (2004). https;//doi.org/10.1002/anie.200460566
  14. S.I. Sadovnikov, A.I. Gusev, A.A. Rempel. Superlatt. Microstr. 83, 35--47 (2015). http://dx.doi.org/10.1016/j.spmi.2015.03.024
  15. X'Pert HighScore Plus.Version 2.2e (2.2.5). 2009 PANalytical B.V. Almedo, the Netherlands
  16. T.C. Farrar, E.D. Becker. Pulse and Fourier Transform NMR: Introduction to Theory and Methods. Academic Press, N.Y.--London (1971). 115 p
  17. J. Wang, R. Graf, A. Riedinger. J. Materi. Chem. C 9, 34, 11079--11084 (2021). DOI: 10.1039/D1TC01983J
  18. A. Abraham. Yaderny magnetizm. Pod redaktsiei G.V. Skrotskogo. Inostr. Lit., M. (1963). 551 s. (in Russian)
  19. Ch.Slikter. Osnovy teorii magnitnogo rezonansa. Mir, M. (1981) (in Russian). 448 s. (in Russian)
  20. S.I. Sadovnikov, M.G. Kostenko, A.I. Gusev, A.V. Lukoyanov. ZhETF 165, 3 374--388 (2024). (in Russian). DOI: 10.31857/S0044451024030076
  21. Universal Structure Predictor: Evolutionary Xtallography. Manual. Version 9.4.4 (http://uspex-team.org)
  22. A.R. Oganov, C.W. Glass. J. Chem. Phys. 124, 24, 244704 (2006). https://doi.org/10.1063/1.2210932
  23. R. Sadanaga, S. Sueno. Mineralog. J. Japan. 5, 2, 124--148 (1967)
  24. S.I. Sadovnikov, A.I. Gusev. JETP Lett. 109, 9, 584--588 (2019). DOI: 10.1134/S0021364019090145
  25. O. Alekperov, Z. Jahangirli, R. Paucar. Phys. Stat. Sol. B 253, 10, 2049--2055 (2016). DOI: 10.1002/pssb.201552784
  26. S. Kashida, N. Watanabe, T. Hasegawa, H. Iida, M. Mori, S. Savrasov. Sol. State Ionics 158, 1, 167--175 (2003). https://doi.org/10.1016/S0167-2738(02)00768-3
  27. S.I. Sadovnikov, A.I. Gusev, A.A. Rempel. Superlat. Microstr. 83, 35--47 (2015). http://dx.doi.org/10.1016/j.spmi.2015.03.024
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru