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The present study investigates the electronic and mechanical properties of potassium and rubidium niobates

forming temperature-dependent lattices in cubic, tetragonal, orthorhombic or rhombohedral crystal systems. The

calculations are based on the framework of density functional theory (DFT) using the HSE06 functional. The

dispersion curves for these perovskites were obtained, and it was found that in all phases except rhombohedral

KNbO3 has imaginary modes, indicating the instability of the structures. However, for RbNbO3 such a picture was

not observed, and except for the phase with cubic unit cell imaginary frequencies in the dispersion dependences

were absent. The electronic bands, high-frequency dielectric permittivity, and lattice formation energy, along with

other relevant properties, have been calculated for all phases of both RbNbO3 and KNbO3 crystals.
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1. Introduction

Perovskite type crystals such as BaTiO3 are widely known

as ferroelectrics. These compounds were widely inves-

tigated in the 1960s and 1970s. Ferroelectric transitions

related to crystalline structural (phase) transitions are a

typical feature of these materials. Analysis of symmetry

variation in phase transitions in crystals is generally used

to solve one of two problems [1]. The first problem is

in predicting possible symmetry groups of low-temperature

phases when the symmetry of a high-temperature phase is

known. The first problem is generally referred to as the

Landau problem. The inverse Landau problem — is the

prediction of higher symmetry phases with respect to the

chosen lower symmetry phase.

This study investigates phase transitions and properties

of perovskite structures of potassium niobate (KNbO3) and

rubidium niobate (RbNbO3) classified to the ABO3 family

(A=K, Ta, . . ., B=Ba,Nb, . . .). Note that the KNbO3

and RbNbO3 crystals are isostructural with the BaTiO3

crystals and have the same sequence of phase transitions [2].
In the KNbO3 case, four phases were observed

experimentally: cubic (Pm-3m, SG 221), tetragonal

(P4mm SG 99), orthorhombic (Amm2, SG 38) and rhom-

bohedral (R3m, SG160) [3]. All these phases are shown in

Figure 1. The experiment for KNbO3 found three successive

temperature-reversible phase transitions (cubic-tetragonal-
orthorhombic-rhombohedral). However, the specified tran-

sitions run with hysteresis, which indicates that these are

first-order phase transitions. Moreover, though the space

groups of all phases are subgroups of the cubic phase

group, their space groups in the tetragonal-orthorhombic

sequence are not linked by the group−subgroup relation.

For RbNbO3, the phase transition picture changes signifi-

cantly and there is no general consensus in the literature

concerning the stability of the most low-temperature phase.

In particular, some authors claim that the rhombohedral

phase shall be stable at zero temperature [4], while other

authors argue that another crystal lattice might be more

stable [5,6].

2. Calculation procedure

Computational description of crystalline phases required

high computational accuracy of phonon frequencies because

they are defined by the second numerical derivatives of full

energy with respect to atomic displacements. Therefore,

direct-lattice summation requires a high order of account-

ing for single-electron, Coulomb and exchange integrals.

This aspect was considered when selecting calculation

details.

This work used the HSE06 hybrid exchange-correlation

functional [7] implemented in CRYSTAL17 software [8].
This software is intended for periodic system simulation

where localized atomic Gaussian functions are used for

approximation of the Bloch crystal orbitals. Comparison

of our calculations including five various density func-

tionals (PBE, PBE0, B3LYP, HSESOL, HSE06) with the

experimental data for the rhombohedral KNbO3 phase

shows the priority of the HSE06 hybrid density functional

for correct determination of structure and energy gap
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Figure 1. Various KNbO3 and RbNbO3 phases: (I) Pm-3m, cubic, (II) P4mm, tetragonal, (III) Amm2, orthorhombic (a: common

orthorhombic lattice cell, b: primitive rhombic lattice cell), and (IV) R3m, rhombohedral.

of KNbO3. This conclusion agrees with the findings

of [9], where the KNbO3 HSE electronic structure was

calculated after comparison of data acquired for five DFT

functionals (LDA, PBE, PBEsol, AM05, RTPSS). Sets of

atomic bases were taken from CRYSTAL website [8,10].
Sets of DZVP electronic bases were used for K and O

atoms [11]. A relativistic pseudopotential and corresponding

sets of TZVP bases for valence electrons were used for the

Nb atom [12].

The Monkhorst−Pack grid [13] with 8× 8× 8 k-points
and accuracies 8, 8, 8, 8, 16 for single-electron, Coulomb

and exchange integrals was used for summation over

the Brillouin zone (BZ). Briefly speaking, these values

indicate that, during direct-lattice summation, single-electron

integrals and two-electron Coulomb integrals lower than

10−8 are estimated using a multipole expansion, and

the two-electron exchange integrals lower than 10−16

are ignored. The DFT-D2 approximation was used

for dispersion correction required to reproduce the Van

der Waals interactions [14]. In solving single-electron

equations, self-consistency in energy was achieved with

accuracy of 3 · 10−9 eV. Geometry of all studied systems

was fully optimized until forces on atoms were not higher

than 0.003 eV/Å.

Phonon frequencies were calculated using the following

procedure (see the use of this procedure for phonon

frequency calculations [15] in four BaTiO3 phases). Equi-

librium geometry was first found. A lattice parameter

that completely defines the structure was optimized in

the cubic phase. Lattice parameters and fractional atomic

displacements were optimized in the ferroelectric phases.

Atomic and cellular relaxations were performed with an

atom force convergence criterion set to 0.005 eV/Å. Energy

variation threshold between the optimization steps for self-

consistency cycles was 10−8 eV for structure optimization

and 10−10 eV for phonon frequency calculations.

3. Ab initio calculations of electronic
properties KNbO3 and RbNbO3

Crystalline structures of all above-mentioned four

RbNbO3 and KNbO3 perovskite phases were determined

experimentally, the corresponding data is available in the

Inorganic Crystal Structure Database (ICSD). The latest

publications concerning the structure are listed in Table 1

(in brackets). For the orthorhombic Amm2 phase and

rhombohedral R3m phase, the structure data is given for the

primitive lattice cell (this setting differs from the common

setting). Table 1 also compares our calculated structure and

band gap data with the data from [9] for KNbO3 (marked

with∗). These data was obtained using the DFT plane-

wave implementation in VASP [16]. The HSE non-local

hybrid functional with the Hartree−Fock exact exchange

percentage of 30% was used (our HSE06 calculations

used 25%). Electron wave functions were extended to cover

the kinetic energy of 600 eV. For the rubidium equivalent,

the calculated literature data concerning the band gap [4]
are also provided (marked with∗∗), where ABINIT with
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Table 1. Atomic structure and band gap data calculated using the HSE06 functional. Lattice parameters are given in Å. Experimental

data is given in brackets and taken from Inorganic Crystal Structure Database (ICSD)

Space
Lattice parameters RbNbO3 KNbO3

group

SG 221

Lattice parameters

a , Å 4.025 (4.025) 3.983 (4.025)
b, Å 4.025 (4.025) 3.983 (4.025)
c, Å 4.025 (4.025) 3.983 (4.025)
α, ◦ 90◦ 90◦

β, ◦ 90◦ 90◦

γ, ◦ 90◦ 90◦

Atomization energy, eV 28.872 30.611

Dielectric permittivity 5.202 4.89

Born effective charges 1.112 1.059

Rb(K) 9.269 9.177

Nb −3.461 −3.412

O1 −3.461 −3.412

O2 −3.461 −3.412

O3

Band gap, eV 2.73, 2.37∗∗ 2.82, 3.14∗

SG 99

Lattice parameters

a , Å 3.852 (3.997) 3.967 (3.996)
b, Å 3.852 (3.997) 3.967 (3.996)
c, Å 5.275 (4.064) 4.066 (4.063)
α, ◦ 90◦ 90◦

β, ◦ 90◦ 90◦

γ, ◦ 90◦ 90◦

Atomization energy, eV 29.066 30.638

Dielectric permittivity 3.814, 2.828 4.673, 4.015

Born effective charges 1.236 1.084

Rb(K) 6.271 8.185

Nb −1.630 −2.756

O1 −2.938 −3.256

O2 −2.938 −3.256

O3

Band gap, eV 2.88, 2.58∗∗ 2.88, 3.23∗

SG 38

Lattice parameters

a , Å 3.966 (3.974) 3.961 (3.971)
b, Å 4.141 (4.037) 4.024 (4.034)
c, Å 4.141 (4.037) 4.024 (4.034)
α, ◦ 89.63◦ (89.73) 89.84◦ (89.72)
β, ◦ 90◦ 90◦

γ, ◦ 90◦ 90◦

Atomization energy, eV 29.014 30.643

Dielectric permittivity 4.536, 4.144, 3.733 4.612, 4.334, 4.066

Born effective charges 1.170 0.656

Rb(K) 4.976 5.316

Nb −3.069 −2.764

O1 −1.538 −1.604

O2 −1.538 −1.604

O3

Band gap, eV 3.31, 3.25∗∗ 3.30, 3.59∗
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Table 1 (contd.)

Space
Lattice parameters RbNbO3 KNbO3

group

SG 160

Lattice parameters

a , Å 4.072 (4.013) 4.003 (4.013)
b, Å 4.072 (4.013) 4.003 (4.013)
c, Å 4.072 (4.013) 4.003 (4.013)
α, ◦ 89.82◦ (89.82) 89.90◦ (89.82)
β, ◦ 89.82◦ (89.82) 89.90◦ (89.82)
γ, ◦ 89.82◦ (89.82) 89.90◦ (89.82)

Atomization energy, eV 29.001 30.645

Dielectric permittivity 4.349, 3.874 4.420, 4.108

Born effective charges 1.147 1.099

Rb(K) 7.101 7.846

Nb −2.749 −2.982

O1 −2.749 −2.982

O2 −2.749 −2.982

O3

Band gap, eV 3.96, 3.57∗∗ 3.53, 3.80∗

Table 2. Dependence of the volume compression modulus on the

lattice cell symmetry

Space
RbNbO3 KNbO3

group

SG 221 203.94 (GPa) 215.33 (GPa)

SG 99 34.06 (GPa) 137.89 (GPa)

SG 38 32.11 (GPa) 138.69 (GPa)

SG 160 104.20 (GPa) 142.63 (GPa)

the GW approximation was used for calculation. Table 1

demonstrates good agreement of our calculated data with

the HSE data [9] for KNbO3 and GW data for RbNbO3 [4],
and with the experimental structural data.

In case of KNbO3, it is shown that the calculated

lattice formation energy decreases in a correct order as

the structure stability decreases (with increasing phase

existence temperature), while the band gap increases during

transition from the high-temperature cubic phase to low-

temperature rhombohedral cell, which also agrees with

theoretical concepts of the dependence between a band

gap and temperature. However, in case of RbNbO3, the

dependence is not so unambiguous any longer, and as the

band gap increases, the lattice formation energy decreases

in the orthorhombic–tetragonal–rhombohedral–cubic lattice

sequence. Note also the differences in dielectric constant

behavior (ε) as the lattice symmetry varies. Thus, in case

of potassium perovskite, the dielectric constant decreases

monotonously, while for RbNbO3 ε takes the minimum

value in the orthorhombic lattice. This fact may indicate

that the lowest-temperature phase for rubidium niobate has

an orthorhombic symmetry.

Electron bands shown in Figure 2 and Figure 3 demon-

strate that indirect electronic transition from the valence

band to conduction band is inherent in both perovskites

in all phases, which agrees with other electronic structure

calculation data. The band gap is also in agreement with the

literature data [17–21].

4. Calculations of phonon and
mechanical properties

Phonon frequencies were obtained by the frozen phonon

method [22,23] in harmonic approximation with optimized

equilibrium crystalline structure parameters. Phonon fre-

quencies in the center of the Brillouin zone (dynamic

matrix eigenvalues) are determined from numerical second-

order derivative of energy with respect to ground state

displacements. For this, the total energy is calculated

as found for each crystalline phase of the optimized

structure. To obtain phonon frequencies at non-zero wave

vectors, a supercell approach is used. Convergence of

phonon frequencies and dispersion curves depending on

the supercell size was studied by means of ab initio frozen

phonon calculations.

Figure 4 shows dispersion curves of phonon for various

KNbO3 phases. It is shown that imaginary phonon

frequencies disappear only for the rhombohedral phase

(SG160). This supports the experimental data concerning

the stability of this phase at low temperatures. In case

of RbNbO3, one dispersion dependence differs (Figure 5)
and none of the reviewed phases, except the cubic one,

have imaginary frequencies. This fact may suggest that
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Figure 2. Electron bands for various KNbO3 phases: I — cubic phase (SG221); II — tetragonal phase (SG 99); III — orthorhombic

phase (SG 38); IV — rhombohedral phase (SG 160).

the corresponding phase transitions that connect the or-

thorhombic, tetragonal and rhombohedral phases might be

the first-order phase transitions. As for the dependence of

compression modulus on lattice symmetry (Table 2), note

that this dependence for both crystals in non-monotonous

and decreases during transition from cubic to orthorhombic

lattice, after which increases again during transition to

rhombohedral phase.

5. Conclusions and findings

Ab initio DFT-HSE06 LCAO calculations were performed

with optimization of lattice parameters and atomic coordi-

nates for all experimentally observed KNbO3 and RbNbO3

phases. For electronic and structural properties, good

agreement with experimental data and DFT plane-wave

calculations was found.

A temperature-reversible phase transition sequence was

observed for KNbO3. Ab initio DFT-HSE06 LCAO cal-

culations of phonon dispersion curves correspond to 0K.

They proved that a stable phase existed only for the lowest-

temperature rhombohedral structure. Imaginary frequencies

appear for other three phases (see Figure 4), which

means that these phases are instable for 0K. However,

calculation data for rubidium perovskite doesn’t indicate

instability of any phase, except the cubic one, moreover,

according to the lattice formation energy calculations, a

lattice with orthorhombic crystal system provides the highest

energy benefit compared with isolated atoms, whereas

the lowest dielectric constant is observed in the same

phase.
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Figure 3. Electron bands for various RbNbO3 phases: I — cubic phase (SG221); II — tetragonal phase (SG 99); III — orthorhombic

phase (SG 38); IV — rhombohedral phase (SG 160).
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Figure 4. Phonon dispersion for various KNbO3 phases: I — cubic phase (SG221); II — tetragonal phase (SG 99); III — orthorhombic

phase (SG 38); IV — rhombohedral phase (SG 160).
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Figure 5. Phonon dispersion for various RbNbO3 phases: I — cubic phase (SG221); II — tetragonal phase (SG 99); III — orthorhombic

phase (SG 38); IV — rhombohedral phase (SG 160).
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