Schakhray M.S.1,2, Antonov D.V.1,2, Strizhak P.A.1,2, Sazhin S.S.1,2,3
1Tomsk Polytechnic University, Tomsk, Russia
2Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
3School of Architecture, Technology and Engineering, Advanced Engineering Centre, University of Brighton, Brighton, U.K.
Email: dva14@tpu.ru
Theoretically predicted characteristics of high-temperature evaporation of water droplets with solid impurities are presented. The evolution of droplet radii and temperatures during evaporation in a heated gas for their initial radii in the range 10 to 100 μm and gas temperatures in the range 500 to 1100 K is investigated. It is shown that an increase in the initial mass fraction of solid impurities in water droplets leads to non-linear increase in their evaporation rate. It is found that for the initial mass fractions of solid impurities in the range 5 to 8%, droplet initial radii in the range 10 to 100 μm and gas temperatures in the range 500 to 1100 K, droplet evaporation times increase from 0.1 to 0.36 s. These times are typical for spraying of wastewater in heating chambers. Keywords: droplet, evaporation, impurities, heating, thermal purification.
- T.A. Karyukhina, I.N. Churbanova, Khimiya vody i Microbiologiya (Stroyizdat, M., 1983), p. 123. (in Russian)
- A. Zahoor, G. Mao, X. Jia, X. Xiao, J.L. Chen, Environ. Sci.: Adv., 1 (2), 92 (2022). DOI: 10.1039/D2VA00002D
- J.A.C. Castellar, A. Torrens, G. Buttiglieri, H. Monclus, C.A. Arias, P.N. Carvalho, A. Galvao, J. Comas, J. Clean. Prod., 340, 130660 (2022). DOI: 10.1016/j.jclepro.2022.130660
- V.A. Nikashina, Sorbtsyonnye i khromatographicheskie protsessy, 19 (3), 289 (2019). (in Russian) DOI: 10.17308/sorpchrom.2019.19/746
- D. Ghazi, Z. Rasheed, E. Yousif, Arch. Org. Inorg. Chem. Sci., 3 (3), 344 (2018). DOI: 10.32474/AOICS.2018.03.000161
- A. Kizgin, D. Schmidt, A. Joss, J. Hollender, E. Morgenroth, C. Kienle, M. Langer, J. Environ. Manage., 347, 119001 (2023). DOI: 10.1016/j.jenvman.2023.119001
- D.V. Antonov, R.S. Volkov, M.V. Piskunov, P.A. Strizhak, Tech. Phys. Lett., 42 (3), 248 (2016). DOI: 10.1134/S1063785016030032
- D.L. Dubovets, Ecologiya na predpriyatii, N 5 (143), 27 (2023). (in Russian)
- B.S. Valiev, D.V. Ivanov, R.R. Shagidullin, Ros. zhurn. prikladnoy ecologii, N 4, 52 (2020). (in Russian) DOI: 10.24411/2411-7374-2020-10034
- A.P. Gus'kov, Tech. Phys. Lett., 47, 553 (2021). DOI: 10.1134/S1063785021060080
- V. Balaram, L. Copia, U.S. Kumar, J. Miller, S. Chidambaram, Geosyst. Geoenviron., 2 (4), 100210 (2023). DOI: 10.1016/j.geogeo.2023.100210
- S.S. Sazhin, O. Rybdylova, A.S. Pannala, S. Somavarapu, S.K. Zaripov, Int. J. Heat Mass Transfer, 122, 451 (2018). DOI: 10.1016/j.ijheatmasstransfer.2018.01.094
- D.V. Antonov, G.V. Kuznetsov, P.A. Strizhak, Appl. Therm. Eng., 195, 117190 (2021). DOI: 10.1016/j.applthermaleng.2021.117190
- C.L. Yaws, Yaws' handbook of thermodynamic and physical properties of chemical compounds (Knovel, 2003)
- B. Abramzon, W.A. Sirignano, Int. Commun. Heat Mass Transfer, 32 (9), 1605 (1989). DOI: 10.1016/0017-9310(89)90043-4
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.