Dynamic emission and absorption of THZ signals by the array of double-layer nanowires
Chigarev S.G.
1, Vilkov E.A.
1, Byshevski-Konopko O.A.
1, Zagorsky D.L.
2, Doludenko I.M.
2, Panas A.I.
31Kotelnikov Institute of Radio Engineering and Electronics, Fryazino Branch, Russian Academy of Sciences, Fryazino, Russia
2Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC National Research Centre “Kurchatov Institute”, Moscow, Russia
3A.I. Shokin ISTOK Research and Production Enterprise, Fryazino, Russia
Email: byshevski@ms.ire.rssi.ru, chig50@mail.ru
THz-radiation sources based on spintronics principles using heterostructures formed by arrays of bilayer Fe/Ni and Ni/Co nanowires grown in polymer matrices (track membranes) are considered. In the frequency range of 12-30 THz, a comparative analysis of their response to the current flowing through them and separately to external THz radiation was carried out. The correspondence between the frequency ranges of spin-injection (dynamic) THz-radiation excited by current, injecting spins in the layers of heterostructures, and the area of intense absorption of electromagnetic oscillations of an external source has been established. This suggests the possibility of using structures with an array of nanowires to register THz-signals. Keywords: spin current injection, external THz radiation, spin unbalance, dynamic THz radiation, THz radiation absorption.
- A. Fert, J.-M. George, H. Jaffr\`es, R. Mattana, P. Seneor. Europhys. News, 34 (6), 227 (2003). DOI: 10.1051/epn:2003609609
- J.F. Gregg, I. Petej, E. Jouguelet, C. Dennis. J. Phys. D: Appl. Phys., 35 (18), R121 (2002). DOI: 10.1088/0022-3727/35/18/201
- I. Zutic, J. Fabian, S. Das Sarma. Rev. Mod. Phys., 76 (2), 323 (2004). DOI: 10.1103/RevModPhys.76.323
- S. Maekawa (Editor). Concepts in Spin Electronics (Oxford University Press, NY., 2006), DOI: 10.1093/acprof:oso/9780198568216.001.0001
- P.A. Grunberg, Rev. Mod. Phys., 80 (4), 1531 (2008). DOI: 10.1103/RevModPhys.80.1531
- Yu.V. Gulyaev, P.E. Zilberman, A.I. Panas, E.M Epshtein. Phys.-Usp., 52 (4), 335(2009). DOI: 10.3367/UFNe.0179.200904b.0359
- Yu.V. Gulyaev, P.E. Zil'berman, E.M. Epshtein, A.K. Zvezdin, K.A. Zvezdin, A.V. Khval'kovskii. Phys. Usp., 51 (4), 409 (2008). DOI: 10.1070/PU2008v051n04ABEH006509
- X. Zhou, L. Ma, Z. Shi, W.J. Fan, Jian-Guo Zheng, R.F.L. Evans, S.M. Zhou. Phys. Rev. B, 92 (6), 060402 (2015). DOI: 10.1103/PhysRevB.92.060402
- Y.-C. Lau, D. Betto, K. Rode, J.M.D. Coey, P. Stamenov. Nature Nanotech., 11 (9), 758 (2016). DOI: 10.1038/nnano.2016.84
- P.E. Faria Jr, G. Xu, Y.-F. Chen, G.M. Sipahi, I. v Zutic. Phys. Rev. B, 95 (11), 115301 (2017). DOI: 10.1103/PhysRevB.95.115301
- J. Walowski, M. Munzenberg. J. Appl. Phys., 120 (14), 140901 (2016). DOI: 10.1063/1.4958846
- A. Fernandez-Pacheco, R. Streubel, O. Fruchart, R. Hertel, P. Fischer, R.P. Cowburn. Nature Comm., 8 (6), 15756 (2017). DOI: 10.1038/ncomms15756
- S.S. Dhillon, M.S. Vitiell, E.H. Linfield, A.G. Davies, M.C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G.P. Williams, E. Castro-Camus, D.R.S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C.A. Schmuttenmaer, T.L. Cocker, R. Huber, A.G. Markelz, Z.D. Taylor, V.P. Wallace, J.A. Zeitler, J. Sibik, T.M. Korter, B. Ellison, S. Rea, P. Goldsmith, K.B. Cooper, R. Appleby, D. Pardo, P.G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stohr, M. Naftaly, N. Ridler, R. Clarke, J.E. Cunningham, M.B. Johnston. J. Phys. D: Appl. Phys., 50 (4), 043001 (2017). DOI: 10.1088/1361-6463/50/4/043001
- A.M. Kadigrobov, Z. Ivanov, T. Claeson, R.I. Shekhter, M. Jonson. Europhys. Lett., 67 (6), 948 (2004). DOI: 10.1209/epl/i2004-10159-8
- V. Korenivski, A. Iovan, A. Kadigrobov, R.I. Shekhter. Europhys. Lett., 104 (2), 27011 (2013). DOI: 10.1209/0295-5075/104/27011
- Yu.V. Gulyaev, P.E. Zilberman, I.V. Malikov, G.M. Mikhailov, A.I. Panas, S.G. Chigarev, E.M. Epshtein. JETP Lett., 93 (5), 259 (2011). DOI: 10.1134/s0021364011050055
- C.R. Martin. Science, 266 (5193), 1961 (1994). DOI: 10.1126/science.266.5193.1961
- M. Vazquez (Editor). Magnetic nano- and microwires: design, synthesis, properties and applications (Woodhead Publishing, Amsterdam, 2005)
- A.D. Davydov, V.M. Volgin. Russ. J. Electrochem., 52 (9), 806 (2016). DOI: 10.1134/S1023193516090020
- D.L. Zagorskiy, I.M. Doludenko, S.G. Chigarev, E.A. Vilkov, V.M. Kanevskii, A.I. Panas. IEEE Trans. Magnetics, 58 (2), 2300605 (2021). DOI: 10.1109/TMAG.2021.3083407
- A.S. Shatalov, D.L. Zagorsky, S.G. Chigarev, I.N. Dyuzhikov. Tverdotel'nyj istochnik elektromagnitnogo izlucheniya i sposob ego izgotovleniya. (Pat. N. 2715892. Byulleten' "Izobreteniya. Poleznye modeli", N 7, 2020) (in Russian)
- B.P. Zakharchenya, D.N. Mirlin, V.I. Perel', I.I. Reshina. Sov. Phys. Usp., 25 (3), 143 (1982). DOI: 10.1070/PU1982v025n03ABEH004519
- Yu.V. Gulyaev, S.G. Chigarev, A.I. Panas, E.A. Vilkov, N.A. Maksimov, D.L. Zagorskii, A.S. Shatalov. Tech. Phys. Lett., 45 (3), 271 (2019). DOI: 10.1134/S1063785019030271
- L.A. Fomin, V.G. Krishtop, E.S. Zhukova, S.S. Zhukov, D.L. Zagorsky, I.M. Doludenko, S.G. Chigarev, E.A. Vilkov, A.I. Panas. Proc. SPIE, 12157, 1215706 (2022). DOI: 10.1117/12.2623795
- L.A. Fomin, D.L. Zagorskiy, S.G. Chigarev, E.A. Vilkov, V.G. Krishtop, I.M. Doludenko, S.S. Zhukov. Tech. Phys., 67 (8), 961 (2022). DOI: 10.21883/TP.2022.08.54557.71-22
- A.I. Panas, S.G. Chigarev, E.A. Vilkov, O.A. Byshevski-Konopko, D.L. Zagorskiy, I.M. Doludenko. Bull. Russ. Acad. Sci. Phys., 86 (7), 841 (2022). DOI: 10.3103/S1062873822070243
- S.G. Chigarev, L.A. Fomin, D.P. Rai, E.A. Vilkov, O.A. Byshevsky-Konopko, D.L. Zagorsky, I.M. Doludenkoand, A.I. Panas. SPIN, 13 (1), 2350010 (2023). DOI: 10.1142/S2010324723500108