Phase transition and strength properties of eutectic lead-bismuth alloy in the temperature range of 20-110oC under shock loading
Savinykh A. S.
1,2, Garkushin G. V.
1,2, Razorenov S. V.
1,21Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia
2Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
Email: savas@ficp.ac.ru, garkushin@ficp.ac.ru, razsv@ficp.ac.ru
The phase transition parameters of the samples of the eutectic alloy Bi - 56.5 mass%, Pb - 43.5 mass% 0.2-8 mm thick were measured at initial temperatures of 20, 60, 96 and 111oC and a maximum shock compression stress of ~ 4 GPa. In experiments, the structure of compression and rarefaction waves was recorded using the VISAR laser Doppler velocimeter. A decrease in the phase transition stress was revealed as the compression wave propagated through the sample, the initial and maximum transition rates were estimated and the times of the corresponding transformations were determined. The measurements of the values of the Hugoniot elastic limit and the spall strength at stresses above the phase transition stress were carried out. Keywords: lead-bismuth eutectic alloy, shock waves, phase transition, temperature, Hugoniot elastic limit, spall strength.
- S.S. Kutateladze, V.M. Borishansky, I.I. Novikov, O.S. Fedynsky. Zhidkometallicheskie teplonositeli (Atomizdat, M., 1958) (in Russian)
- V.S. Chirkin. Teplofizicheskie svojstva materialov yadernoj tekhniki, Spravochnik (Atomizdat, M., 1968) (in Russian)
- K. Morita, V. Sobolev, M. Flad. J. Nucl. Mater., 362, 227 (2007). DOI: 10.1016/j.jnucmat.2007.01.048
- P.S. Popel', D.A. Yagodin, A.G. Mozgovoi, M.A. Pokrasin. High Temp, 48, 181 (2010). DOI: 10.1134/S0018151X10020070
- V.P. Sobolev, P. Schuurmans, G. Benamati. J. Nucl. Mater., 376, 358 (2008). DOI: 10.1016/j.jnucmat.2008.02.030
- Z. Rozenberg. J. Appl. Phys., 56 (11), 3328 (1984). DOI: 10.1063/1.333855
- R.E. Duff, F.S. Minshall. Phys. Rev., 108 (5), 1207 (1957). DOI: 10.1103/PhysRev.108.1207
- D.B. Larson. J. Appl. Phys., 38 (4) 1541 (1967). DOI: 10.1063/1.1709720
- J.R. Asay. J. Appl. Phys., 48, 2832 (1977). DOI: 10.1063/1.324144
- M.N. Pavlovskii, V.V. Kommissarov. Sov. Phys. JETP, 83 (6), 2146 (1982)
- E.Y. Tonkov. Fazovye prevrashcheniya soedinenij pri vysokom davlenii (Metallurgiya, M., 1988), vol. 1. (in Russian)
- A.S. Savinykh, G.V. Garkushin, S.V. Razorenov. Tech. Phys., 68 (3), 3539 (2023). DOI: 10.21883/TP.2023.03.55809.269-22
- A.A. Aleksandrov, K.A. Orlov, V.F. Ochkov. Svojstva i protsessy rabochikh tel i materialov atomnoj energetiki(Izdat. dom MEI, M., 2012) (in Russian)
- G.V. Garkushin, A.S. Savinykh, G.I. Kanel, S.V. Razorenov. JETP, 128 (2), 268 (2019). DOI: 10.1134/S1063776119010114
- L.M. Barker, R.E. Hollenbach. J. Appl. Phys., 43, 4669 (1972). DOI: 10.1063/1.1660986
- G.I. Kanel. Int. J. Fract., 163 (1), 173 (2010). DOI: 10.1007/s10704-009-9438-0
- G.I. Kanel. J. Appl. Mech. Tech. Ph. 42, 358 (2001). DOI: 10.1023/A:1018804709273
- E.B. Zaretsky, G.I. Kanel. J. Appl. Phys., 117, 195901 (2015). DOI: 10.1063/1.4921356
- G.I. Kanel, S.V. Razorenov, V.E. Fortov. Shock-Wave Phenomena and Properties of Condensed Matter (Springer, 2004)
- E.B. Zaretsky. J. Appl. Phys., 106, 023510 (2009). DOI: 10.1063/1.3174442
- G.I. Kanel, G.S. Bezruchko, A.S. Savinykh, V.V. Milyavskii. K.V. Khishchenko. High Temp., 48, 806 (2010). DOI: 10.1134/S0018151X10060064