Title: On the diffusion nature of α-relaxation in the amorphous polymer T20-60
Darinskii B. M. 1, Kalinin Yu. E. 2, Kashirin M. A. 2, Kepman A. V. 3, Safonov K. S. 2, Makagonov V. A. 2, Popov I. I. 2
1Voronezh State University, Voronezh, Russia
2Voronezh State Technical University, Voronezh, Russia
3Lomonosov Moscow State University, Moscow, Russia
Email: popovich_vano@mail.ru

PDF
The temperature dependences of internal friction Q-1(T) for the T20-60 epoxy polymer hardened at room temperature and deposited on a glass-ceramic substrate were studied. The Q-1(T) dependence of the polymer structure in the region of the α-relaxation process has a maximum associated with the diffusion of vacancy-like oxygen defects of the end groups of the epoxy resin. In the α-relaxation region, three straight sections with different slope angles are observed in the ln Q-1(1/T) dependence for the mboxT20-60 polymerized at room temperature. Based on the ln Q-1(1/T) experimental dependences, the migration energy and formation energy of vacancy-like oxygen defects of epoxy groups for the polymer under study were estimated. In the pre-hardened T20-60 polymer, in the α-relaxation region on the ln Q-1(1/T) dependence for the low-temperature branch of the Q-1 maximum, two straight sections with different slope angles are observed, associated with the migration of vacancy-like oxygen defects entering the polymer network. The migration energy and formation energy of vacancy-like oxygen defects in the main polymer network were estimated, which turned out to be Em2 = 0.88 ± 0.09 eV and Ev2= 0.91±0.09 eV. The ln Q-1(1/T) dependence for the high-temperature branch of the Q-1 maximum has one straight section. The assessment of the activation energy on this branch showed higher values than on the low-temperature branch of the Q-1 maximum, which indicates the diffusion nature of the α-relaxation process of the T20-60epoxy binder. Keywords: internal friction, epoxy polymer, α-relaxation, glass transition temperature.
  1. N.P. Kobelev, V.A. Khonik. UFN, 193 (7), 717 (2023) (in Russian). DOI: 10.3367/UFNr.2022.04.039173 [N.P. Kobelev, V.A. Khonik. Phys.-Usp., 66 (7), 690 (2023). DOI: 10.3367/UFNe.2022.04.039173]
  2. A.S. Arkhipin, A. Pisch, G.M. Zhomin, S.V. Kuzovchikov, A.V. Khvan, N.N. Smirnova, A.V. Markin, N.A. Kovalenko, I.A. Uspenskaya. J. Non-Cryst. Solids, 603, 122098 (2023). DOI: 10.1016/j.jnoncrysol.2022.122098
  3. X. Liu, M.R. Abernathy, T.H. Metcalf, B. Jugdersuren, J.C. Culbertson, M. Molina-Ruiz, F. Hellman. J. Alloy. Compd., 855, 157431 (2021). DOI: org/10.1016/j.jallcom.2020.157431
  4. W.H. Wang. Prog. Mater. Sci., 57, 487 (2012)
  5. G.E. Abrosimova, D.V. Matveev, A.S. Aronin. Phys.-Usp., 65 (3), 227 (2022). DOI: 10.3367/UFNe.2021.04.038974
  6. E.V. Safonova, Yu.P. Mitrofanov, R.A. Konchakov, A.Yu. Vinogradov, N.P. Kobelev, V.A. Khonik. J. Phys.: Condens. Matter., 28, 215401 (2016). DOI: 10.1088/0953-8984/28/21/215401
  7. A.D. Bereznera, V.A. Fedorov, M.Yu. Zadorozhnyy. J. Alloy. Compd., 923, 166313 (2022). DOI: org/10.1016/j.jallcom.2022.166313
  8. Y.J. Duan, L.T. Zhang, J.C. Qiao, Y.J. Wang, Y. Yang, T. Wada, H. Kato, J.M. Pelletier, E. Pineda, D. Crespo. Phys. Rev. Lett., 129, 175501 (2022). DOI: 10.1103/PhysRevLett.129.175501
  9. A.A. Valishin, A.A. Gorshkov, V.A. Lomovskoy. Mech. Solids, 46 (2), 299 (2011)
  10. Y.J. Duan, J.C. Qiao, T. Wada, H. Kato, Y.J. Wang, E. Pineda, D. Crespo. Scr. Mater., 194, 113675 (2021). https://doi.org/10.1016/j.scriptamat.2020.113675
  11. V.S. Postnikov. Russ. Chem. Rev., 36 (10), 787 (1967)
  12. J.S. Harmon, M.D. Demetriou, W.L. Johnson, K. Samwer. Phys. Rev. Lett., 99, 135502 (2007)
  13. J. Hachenberg, K. Samwer. J. Non-Cryst. Solids, 352, 5110 (2006)
  14. H.B. Yu, W.H. Wang, K. Samwer. Mater. Today, 16, 183 (2013)
  15. M. Atzmon, J.D. Ju. Phys. Rev. E, 90, 042313 (2014)
  16. V.A. Lomovskoy, N.A. Abaturova, N.Yu. Lomovskaya, T.B. Galushko. Theor. Found. Chem. Eng., 55 (3), 457 (2021)
  17. S.V. Nemilov, Yu.S. Balashov. Glass Phys. Chem., 42 (2), 119 (2016). DOI: 10.1134/S1087659616020139
  18. N.P. Kobelev, I.G. Brodova, Ya.M. Sovifer, A.N. Manukhin. Physics Solid State, 41 (4), 501 (1999). DOI: 10.1134/1.1130813
  19. V.A. Khonic. J. Phys. IV, 6 (8), 591 (1996)
  20. B. Cai, L.Y. Shang, P. Cui. Phys. Rev. B, 70, 184208 (2004)
  21. L.T. Zhang, J.M. Pelletier, J.C. Qiao. J. Alloy. Compd., 869, 159271 (2021). https://doi.org/10.1016/j.jallcom.2021.159271
  22. V.S. Bilanich, V.B. Onishchak, I.I. Makauz, V.M. Rizak. Physics Solid State, 52 (9), 1820 (2010). DOI: 10.1134/S1063783410090064
  23. A.N. Kabanskaya, V.A. Lomovskoy, A.A. Gorshkov, Z.I. Fomkina, E.V. Kopylova. Vestnik MITHT, 8 (5), 89 (2013) (in Russian)
  24. S.A. Gridnev, Yu.E. Kalinin, V.A. Dybov, I.I. Popov, M.A. Kashirin, N.A. Tolstykh. J. Alloy. Compd., 918, 165610 (2022). https://doi.org/10.1016/j.jallcom.2022.165610
  25. T.R. Aslamazova, V.A. Kotenev, N.Y. Lomovskaya, V.A. Lomovskoi, A.Y. Tsivadze. Protection Metals and Physical Chemistry of Surfaces, 52 (6), 1012 (2016). DOI: 10.1134/S2070205116060071
  26. E.S. Zhavoronok, I.N. Senchikhin, O.A. Khlebnikova, N.Yu. Lomovskaya, V.A. Lomovskoi, V.I. Roldugin. Russ. J. Phys. Chem., 89 (4), 715 (2015). DOI: 10.1134/S0036024415040305
  27. G.M. Bartenev, S.YA. Frenkel Fizika polimerov. (Khimiya, L., 1990) (in Russian)
  28. V.I. Irzhak. Epoksidnye polimery i nanokompozity (Red.-izdat. otd. IPHF RAS, Chernogolovka, 2021) (in Russian)
  29. G.M. Bartenev, D.S. Sanditov. Relaksatsionnye protsessy v stekloobraznykh sistemakh (Nauka, Novosibirsk, 1986) (in Russian)
  30. G.M. Bartenev, V.A. Lomovskoi. Polym. Sci. Ser. A, 44 (8), 841 (2002)
  31. V.A. Lomovskoy. Tonkie khimicheskie tekhnologii, 10 (3), 5 (2015) (in Russian)
  32. M. Reiner. Phys. Today, 17 (1), 62 (1964). DOI: 10.1063/1.3051374
  33. G.M. Bartenev, A.G. Barteneva. Relaksatsionnye svoistva polimerov (Khimiya, M., 1992) (in Russian)
  34. G.M. Bartenev, V.A. Lomovskoi. Russ. J. Phys. Chem., 77 (12), 2045 (2003)
  35. Y.E. Kalinin, A.M. Kudrin, O.V. Ovdak, I.I. Popov. Polym. Sci. Ser. A, 64 (1), 1 (2022). DOI: 10.1134/S0965545X22010047
  36. A.S. Nowick, B.S. Berry. Anelastic relaxation in crystalline solids. (Academic Press, NY., London, 1972)
  37. B. Escaig. Acta Metal., 10, 829 (1962)
  38. Yu.R. Zakis. Defekty v stekloobraznom sostoyanii veshchestva (Zinatne, Riga, 1984) (in Russian)
  39. A.K. Doolittle. J. Appl. Phys., 22, 1471 (1951)
  40. D. Turnbull, M.H. Cohen. J. Chem. Phys., 34, 120 (1961)
  41. D. Turnbull, M.H. Cohen. J. Chem. Phys., 52, 3038 (1970)
  42. Ya.I. Frenkel. Vvedeniye v teoriyu metallov (Nauka, L., 1972) (in Russian)
  43. Yu.R. Zakis. Fizika i himiya stekloobraznyh sistem (LGU, Riga, 1980) (in Russian)
  44. F. Spaepen. J. Non-Crystal. Solids, 31 (1-2), 207 (1978)
  45. F. Spaepen. Scr. Mater., 54, 363 (2006)
  46. C.A. Schuh, T.C. Hufnagel, U. Ramamurty. Acta Mater., 55, 4067 (2007)
  47. A. Van den Beukel, J. Sietsma. Acta Metall. Mater., 38, 383 (1990)
  48. G.V. Kozlov, V.U. Novikov. Phys.-Usp., 44 (7), 681 (2001). DOI: 10.1070/PU2001v044n07ABEH000832
  49. K.S. Gabriels, T.V. Dubovitskaya, Yu.E. Kalinin, M.A. Kashirin et. al. Thin Solid Films, 804, 140504 (2024). https://doi.org/10.1016/j.tsf.2024.140504
  50. I.V. Zolotukhin, Y.E. Kalinin. Sov. Phys. Usp., 33 (9), 720 (1990). DOI: 10.1070/PU1990v033n09ABEH002628
  51. S.A. Gridnev, Y.E. Kalinin. Tech. Phys., 68 (3), 532 (2023). DOI: 10.1134/S1063784223900826
  52. N.P. Kobelev, E.L. Kolyvanov, V.A. Khonik. Physics Solid State, 45 (12), 2225 (2003). DOI: 10.1134/1.1635489
  53. Yu.E. Kalinin, A.T. Kosilov, O.V. Ovdak, A.M. Kudrin, O.A. Karaeva, M.A. Kashirin, D.Ya. Degtyarev. Tech. Phys., 64 (4), 535 (2019). DOI: 10.1134/S1063784219040121
  54. Electronic resource. Epoxy binderT20-60 Available at: www.itecma.ru
  55. A.V. Sitnikov, V.A. Makagonov, Y.E. Kalinin, S.B. Kushchev, V.A. Foshin. Tech. Phys., 68 (11), 1542 (2023). DOI: 10.21883/0000000000
  56. S.A. Gridnev, I.I. Popov, M.A. Kashirin, A.I. Bocharov. J. Alloy. Compd., 889, 161764 (2021). https://doi.org/10.1016/j.jallcom.2021.161764
  57. Z.S. Li, Q.F. Fang, S. Veprek, S.Z. Li. Mater. Sci. Eng. A, 370, 186 (2004). https://doi.org/10.1016/j.msea.2003.09.048
  58. D.S. Sanditov, M.I. Ojovan. Phys.-Usp., 62 (2), 111 (2019). DOI: 10.3367/UFNe.2018.04.038319
  59. D.S. Sanditov. Dokl. Phys. Chem., 464 (2), 255 (2015). DOI: 10.1134/S0012501615100097
  60. I.V. Zolotukhin, YU.E. Kalinin, O.V. Stognej. Novye napravleniya fizicheskogo materialovedeniya (Izd-vo VGU, Voronezh, 2000) (in Russian)
  61. D.S. Sanditov, A.A. Mashanov. Polym. Sci. Ser. A, 61 (2), 119 (2019). DOI: 10.1134/S0965545X1902010X
  62. Y.E. Kalinin, B.M. Darinskii. Metal Sci. Heat Treatment, 54 (5-6), 221 (2012)
  63. V.S. Postnikov. Vnutrenneye treniye v metallakh (Metallurgiya, M., 1974) (in Russian)
  64. Z. Wang, B.A. Sun, H.Y. Bai, W.H. Wang. Nat. Commun., 5, 5823 (2014)
  65. Sovremennaya kristallografiya (v chetyrekh tomakh). Fizicheskie svojstva kristallov L.A. Shuvalov, A.A. Urusovskaya, I.S. Zheludev i dr. (Nauka, M., 1981), t. 4. (in Russian).
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru