The influence of the cathode field enhancer on the conditions for the transition of electrons to the runaway mode
Zubarev N. M. 1,2, Zubareva O. V. 1, Yalandin M. I. 1,2
1Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
2Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: nick@iep.uran.ru, olga@iep.uran.ru, yalandin@iep.uran.ru

PDF
The influence of field enhancers (pointed protrusions on the cathode) on the conditions for the transition of electrons emitted from them to the runaway mode in high-pressure gas is studied analytically. It is shown that the classical directly proportional dependence of the critical runaway field on pressure is replaced by the weaker root dependence in the presence of protrusions of sufficient height. A simple criterion for electron runaway, taking into account the field distortion near the enhancers, is formulated. The minimum height of the protrusions required for a noticeable reduction in the runaway threshold is determined depending on the gas pressure. Keywords: runaway electrons, subnanosecond gas breakdown, inhomogeneous electric field, field enhancers.
  1. C.T.R. Wilson. Proc. Phys. Soc. London, 37, 32D (1924)
  2. H. Dreicer. Phys. Rev., 115, 238 (1959). DOI: 10.1103/PhysRev.115.238
  3. A.V. Gurevich. Sov. Phys. JETP, 12, 904 (1960)
  4. Yu.L. Stankevich, V.G. Kalinin. Sov. Phys. Dokl., 12, 1042 (1968)
  5. G.A. Mesyats, Yu.I. Bychkov, V.V. Kremnev. Sov. Phys. Usp., 15, 282 (1972). DOI: 10.1070/PU1972v015n03ABEH004969
  6. V.V. Kremnev, Yu.A. Kurbatov. Sov. Phys. Tech. Phys., 17,626 (1972)
  7. L.V. Tarasova, L.N. Khudyakova, T.V. Loiko, V.A. Tsukerman. Sov. Phys. Tech. Phys., 19, 351 (1974)
  8. P.A. Bokhan, G.V. Kolbychev. Sov. Tech. Phys. Lett., 6, 418 (1980)
  9. V.F. Tarasenko, V.G. Shpak, S.A. Shunailov, M.I. Yalandin, V.M. Orlovskii, S.B. Alekseev. Tech. Phys. Lett., 29, 879 (2003). DOI: 10.1134/1.1631351
  10. L.P. Babich, T.V. Loiko, V.A. Tsukerman. Sov. Phys. Usp., 33 (7), 521 (1990). DOI: 10.1070/PU1990v033n07ABEH002606
  11. Yu.D. Korolev, G.A. Mesyats, Fizika impul'snogo proboya gazov (Nauka, M., 1991) (in Russian)
  12. G.A. Mesyats, M.I. Yalandin, A.G. Reutova, K.A. Sharypov, V.G. Shpak, S.A. Shunailov. Plasma Phys. Rep., 38, 29 (2012). DOI: 10.1134/S1063780X11110055
  13. V. Tarasenko. Plasma Sources Sci. Technol., 29, 034001 (2020). DOI: 10.1088/1361-6595/ab5c57
  14. L.P. Babich. High-Energy Phenomena in Electric Discharges in Dense Gases (Futurepast, Arlington, TX, USA, 2003)
  15. M.V. Erofeev, E.K. Baksht, V.F. Tarasenko, Y.V. Shut'ko. Tech. Phys., 58, 200 (2013). DOI: 10.1134/S1063784213020060
  16. T. Shao, V.F. Tarasenko, C. Zhang, E.K. Baksht, P. Yan, Y.V. Shut'ko. Laser Part. Beams, 30, 369 (2012). DOI: 10.1017/S0263034612000201
  17. N.M. Zubarev, M.I. Yalandin, G.A. Mesyats, S.A. Barengolts, A.G. Sadykova, K.A. Sharypov, V.G. Shpak, S.A. Shunailov, O.V. Zubareva. J. Phys. D: Appl. Phys., 51, 284003 (2018). DOI: 10.1088/1361-6463/aac90a
  18. D.V. Beloplotov, V.F. Tarasenko, D.A. Sorokin, V.A. Shklyaev. Tech. Phys., 66, 548 (2021). DOI: 10.1134/S1063784221040046
  19. G.A. Mesyats, M.I. Yalandin, N.M. Zubarev, A.G. Sadykova, K.A. Sharypov, V.G. Shpak, S.A. Shunailov, M.R. Ulmaskulov, O.V. Zubareva, A.V. Kozyrev, N.S. Semeniuk. Appl. Phys. Lett., 116, 063501 (2020). DOI: 10.1063/1.5143486
  20. V.F. Tarasenko, D.V. Beloplotov, D.A. Sorokin. Tech. Phys., 67 (5), 586 (2022). DOI: 10.21883/TP.2022.05.53674.317-21
  21. Yu.D. Korolev, G.A. Month. Avtoemissionnye i vzryvnye processy v gazovom razryade (Nauka, Novosibirsk, 1982) (in Russian)
  22. A.V. Kozyrev, Yu.D. Korolev, G.A. Mesyats. Sov. Tech. Phys., 32, 34 (1987)
  23. S.N. Ivanov, V.V. Lisenkov. Plasma Phys. Rep., 49 (11), 1400 (2023). DOI: 10.1134/S1063780X23601517
  24. G.A. Mesyats. JETP Lett., 85, 109 (2007). DOI: 10.1134/S0021364007020038
  25. S.N. Ivanov, V.V. Lisenkov, Yu.I. Mamontov. Plasma Sources Sci. Technol., 30 (7), 075021 (2021). DOI: 10.1088/1361-6595/abf31f\
  26. A.V. Gurevich, K.P. Zybin. Phys. Usp., 44, 1119 (2001). DOI: 10.1070/PU2001v044n11ABEH000939
  27. N.M. Zubarev, O.V. Zubareva, M.I. Yalandin. Tech. Phys., 68 (9), 1204 (2023). DOI: 10.61011/TP.2023.09.57359.142-23
  28. N.M. Zubarev, O.V. Zubareva, M.I. Yalandin. Dokl. Phys., 68 (9), 279 (2023). DOI: 10.1134/S1028335823090070
  29. N.M. Zubarev, G.A. Mesyats, M.I. Yalandin. Phys. Usp., 67 (8), (2024). DOI: 10.3367/UFNe.2023.11.039608
  30. A.M. Boichenko, A.G. Burachenko, I.D. Kostyrya, V.F. Tarasenko, A.N. Tkachev. Tech. Phys., 56 (8), 1202 (2011). DOI: 10.1134/S106378421108007X
  31. A.N. Tkachev, S.I. Yakovlenko. Tech. Phys. Lett., 29, 683 (2003). DOI: 10.1134/1.1606788
  32. A.N. Tkachev, S.I. Yakovlenko. JETP Lett., 77, 221 (2003). DOI: 10.1134/1.1574835
  33. A.V. Gurevich, G.A. Mesyats, K.P. Zybin, M.I. Yalandin, A.G. Reutova, V.G. Shpak, S.A. Shunailov. Phys. Rev. Lett., 109, 085002 (2012). DOI: 10.1103/PhysRevLett.109.085002
  34. N.M. Zubarev, V.Yu. Kozhevnikov, A.V. Kozyrev, G.A. Mesyats, N.S. Semeniuk, K.A. Sharypov, S.A. Shunailov, M.I. Yalandin. Plasma Sources Sci. Technol., 29, 125008 (2020). DOI: 10.1088/1361-6595/abc414
  35. J.R. Dwyer, M.A. Uman. Phys. Rep., 534, 147 (2014). DOI: 10.1016/j.physrep.2013.09.004
  36. V.V. Lisenkov, Yu.I. Mamontov. J. Phys.: Conf. Ser., 1141, 012051 (1018). DOI: 10.1088/1742-6596/1141/1/012051
  37. V.V. Lisenkov, S.N. Ivanov, Yu.I. Mamontov, I.N. Tikhonov. Tech. Phys., 63, 1872 (2018). DOI: 10.1134/S1063784218120095
  38. Yu.I. Mamontov, V.V. Lisenkov, I.V. Uimanov. J. Phys.: Conf. Ser. 1393, 012014 (1019). DOI: 10.1088/1742-6596/1393/1/012014
  39. L.N. Lobanov, G.A. Mesyats, E.A. Osipenko, K.A. Sharypov, V.G. Shpak, S.A. Shunailov, M.I. Yalandin, N.M. Zubarev. IEEE Electron Device Lett., 44, 1748 (2023). DOI: 10.1109/LED.2023.3301867
  40. H. Bethe. Ann. Phys., 397 (3), 325 (1930). DOI: 10.1002/andp.19303970303
  41. J.R. Dwyer, D.M. Smith, S.A. Cummer. Space Sci. Rev., 173, 133 (2012). DOI: 10.1007/s11214-012-9894-0
  42. E. Kunhardt, W. Byszewski. Phys. Rev. A, 21 (6), 2069 (1980). DOI: 10.1103/PhysRevA.21.2069
  43. N.M. Zubarev, G.A. Mesyats, M.I. Yalandin. JETP Lett., 105 (8), 537 (2017). DOI: 10.1134/S002136401708015X
  44. G.I. Taylor. Proc. R. Soc. London, Ser. A, 280 (1382), 383 (1964). DOI: 10.1098/rspa.1964.0151
  45. G.A. Mesyats. Phys. Usp., 49, 1045 (2006). DOI: 10.1070/PU2006v049n10ABEH006118
  46. V.V. Lisenkov, S.N. Ivanov, Yu.I. Mamontov, I.N. Tikhonov. Izvestiya vuzov. Fiz., 61 (9/2), 180 (2018) (in Russian)
  47. S.N. Ivanov. J. Phys. D: Appl. Phys., 46, 285201 (2013). DOI: 10.1088/0022-3727/46/28/285201
  48. N.M. Zubarev, G.A. Mesyats. JETP Lett., 113 (4), 259 (2021). DOI: 10.1134/S0021364021040123
  49. V.V. Lisenkov. Tech. Phys., 65, 710 (2020). DOI: 10.1134/S106378422005014X
  50. L.P. Babich. IEEE Trans. Plasma Sci., 48 (12), 4089 (2020). DOI: 10.1109/TPS.2020.3038247
  51. L.P. Babich. Phys. Usp., 63, 1188 (2020). DOI: 10.3367/UFNe.2020.04.038747
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru