Model of droplets generation during homogeneous condensation of water vapor in the atmosphere on neutral and charged centers
Sinkevich O. A.1,2, Skotarenko E. Yu.1, Kireeva A. N.1
1National Research University «Moscow Power Engineering Institute», Moscow, Russia
2Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
Email: KireevaAN@rambler.ru

PDF
The paper considers homogeneous condensation of water vapors of moist air in the atmosphere taking place during generation of clouds and mists. A method for calculation of a radius of water droplet generated and parameters of liquid inside it is proposed. Peculiarities of homogeneous condensation taking place on centers with electric discharges are investigated. It is shown that the electric discharge leads to the electric pressure establishment at the droplet border and thus to the change in droplet radius as well as the pressure inside it. Keywords: droplet radius, Laplace pressure, surface tension, heat and mass transfer during condensation, droplet on a charged center.
  1. I.P. Mazin, V.M. Merkulovich. In book: Voprosy fiziki oblakov. Sb. st. pamyati S.M. Shmetera (Tsentr. aerolog. observatoriya, M., 2008), p. 217 (in Russian)
  2. L.T. Matveev. Kurs obshchej meteorologii. Fizika atmosfery (Gidrometeoizdat, L., 1984) (in Russian)
  3. L.G. Kachurin. Fizicheskie osnovy vozdejstviya na atmosfernye processy (Gidrometeoizdat, L., 1990) (in Russian)
  4. Ya.B. Zeldovich. ZhETF, 13 (11/12), 525 (1942). (in Russian)
  5. L.E. Sternin. Osnovy gazodinamiki dvuhfaznyh techenij v soplah (Mashinostroenie, M., 1974) (in Russian)
  6. T.E.W. Schumann. Q.J.R. Meteorol. Soc., 66 (285), 195 (1940). DOI: 10.1002/qj.49706628508
  7. N.M. Kortsenshtein, E.V. Samuilov, A.K. Yastrebov. Colloid. J., 69 (4), 450 (2007). DOI: 10.1134/S1061933X07040060
  8. M.V. Smoluchowski. Z. fur physik. Chemie. (92), 129 (1918). DOI: 10.1515/ZPCH-1918-9209
  9. H.G. Houghton, W.H. Radford. In: Papers in Physical Oceanography and Meteorology (Massachusetts, Cambridge and Woods Hole: MIT, Woods Hole Oceanographic Institution, 1938), v. VI, N 4
  10. R.A. Tkalenko. Izv. AN SSSR, MZhG, (5), 73 (1970) (in Russian)
  11. V.P. Bakhanov. Trudy "UkrNIGMI", (Gidrometeoizdat, M., 1972), N 118, p. 46 (in Russian)
  12. P.G. Hill. J. Fluid Mech., 25 (3), 593 (1966). DOI: 10.1017/S0022112066000284
  13. N.M. Kortsenshtein, E.V. Samuilov, A.K. Yastrebov. High Temp., 47 (1), 83 (2009). DOI: 10.1134/S0018151X09010118
  14. L.V. Petrov, N.M. Korzenstein. V sb.: Izbr. dokl. VI Mezhdunar. nauchno-tekhn. konf. "Problemy himmotologii: ot eksperimenta k matematicheskim modelyam vysokogo urovnya" (ID "Granica", M., 2016), p. 97 (in Russian)
  15. N.M. Kortsenshteyn, L.V. Petrov. Colloid J., 79 (3), 333 (2017). DOI: 10.1134/S1061933X17030061
  16. E.V. Samuilov. Izv. RAN. Energetika, (5), 125 (2009) (in Russian)
  17. B.M. Smirnov. Fizika fraktal'nyh klasterov (Nauka, Glav. red. fiz.-mat. lit-ry, M., 1991) (in Russian)
  18. A.G. Amelin. Teoreticheskie osnovy obrazovaniya tumana pri kondensacii para (Himiya, M., 1972) (in Russian)
  19. B.V. Egorov, Yu.B. Markachev, E.A. Plekhanov. Khim. fizika 25 (4), 61 (2006) (in Russian)
  20. M.S. Alam, J.H. Jeong. J. Mol. Liq., 261, 492 (2018). DOI: 10.1016/j.molliq.2018.04.022
  21. G.F. Krymsky, S.I. Petukhov, G.S. Pavlov. Optika atmosfery i okeana, 30 (4), 281 (2017). (in Russian)
  22. D. Kashchiev. Nucleation. Basic Theory with Applications (Butterworth-Heinemann, 2003)
  23. A.P. Grinin, F.M. Kuni, A.K. Shchekin, Theoret. Math. Phys., 52 (1), 699 (1982). DOI: 10.1007/BF01027791
  24. F.M. Kuni, A.K. Shchekin, A.P. Grinin. Phys. Usp., 44 (4), 331 (2001). DOI: 10.1070/PU2001v044n04ABEH000783
  25. B.N. Yudaev. Teploperedacha, ucheb. dlya vuzov (Vyssh. shkola, M., 1973) (in Russian)
  26. V.V. Yagov. Teploobmen v odnofaznyh sredah i pri fazovyh prevrashcheniyah: uchebnoe posobie dlya vuzov (Izdat. dom MEI, M., 2014) (in Russian)
  27. W. Wagner, A. Pruss. J. Phys. Chem. Ref. Data, 31 (2), 387 (2002). DOI: 10.1063/1.1461829
  28. E.Y. Skotarenko. Master. diss. (MEI, Moscow, 2023) (in Russian)
  29. H.R. Pruppacher, J.D. Klett. Microphysics of Clouds and Precipitation (Springer, 2010)
  30. I.M. Imyanitov, E.V. Chubarina. Elektrichestvo svobodnoj atmosfery: Rezul'taty izmerenij vo vremya MGG i MGS (Gidrometeoizdat, L., 1965) (in Russian)
  31. L.P. Babich, E.I. Bochkov, I.M. Kutsyk. Geomagnetism and Aeronomy, 47 (5), 671 (2007). DOI: 10.1134/S0016793207050167
  32. Evidence of runaway electron breakdown in a thunderstorm atmosphere has been obtained An electronic resource. Available at: http://www.fian-inform.ru/novosti-nauki/item/276-polucheny-dokazatelstv
  33. I.M. Matora, I.A. Semenova, N.G. Shakun, P.T. Shishlyannikov. https://textarchive.ru/c-1138891-p9.html
  34. C.-C. Chen, H.-C. Cheng. J. Chem. Phys., 126, 034701 (2007). DOI: 10.1063/1.2424707
  35. O.A. Sinkevich. High Temp., 54 (6), 775 (2016). DOI: 10.1134/S0018151X16060201
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru