Heat capacity and the number of instantaneous-normal modes of a simple liquid
Usov E. V. 1
1NUCLEAR SAFETY INSTITUTE OF THE RUSSIAN ACADEMY OF SCIENCES, Novosibirsk, Russia
Email: usovev@ibrae.ac.ru

PDF
In the last decade, approaches to calculating the thermal properties of liquids have been actively developing. The most developed approaches are those based on the use of the "phonon" theory, which was previously successfully applied to calculate the thermal properties of solids. The "phonon" theory is based on the hypothesis that in addition to longitudinal acoustic waves of a wide range of frequencies, transverse high-frequency acoustic waves can propagate in a liquid. To find the heat capacity of a liquid, the Debye approach is used, which was modified by taking into account only high-frequency transverse waves in the excitation spectrum. Another approach is based on finding the frequency distribution of normal modes (instantaneous-normal modes) in a liquid and constructing the thermal and transport properties of the liquid using the found frequencies. In this paper, the equivalence of both approaches is shown in the harmonic approximation, and a simple one-parameter approximation formula is proposed for calculating the isochoric heat capacity of simple liquids. Keywords: properties, heat capacity, instantaneous-normal modes, transverse waves, "phonon" theory of liquid.
  1. G. Grimvall. Phys. Scripta, 11, 381 (1975). DOI: 10.1088/0031-8949/11/6/009
  2. D. Bolmatov, V.V. Brazhkin, K. Trachenko. Scientific Reports, 2, 421 (2012). DOI: 10.1038/srep00421
  3. D. Bolmatov, V.V. Brazhkin, K. Trachenko. Nature Commun., 4 (1), 233 (2013). DOI: 10.1038/ncomms3331
  4. V.V. Brazhkin, K. Trachenko. J. Phys. Chem. B, 118, 11417 (2014). DOI: 10.1021/jp503647s
  5. K. Trachenko, V.V. Brazhkin. Phys. Rev. B, 83, 014201 (2011). DOI: 10.1103/PhysRevB.83.014201
  6. Y.I. Frenkel. Kineticheskaya teoriya zhidkostey (Nauka, L., 1975) (in Russian)
  7. V.V. Brazhkin, A.G. Lyapin, V.N. Ryzhov, K. Trachenko, Yu.D. Fomin, E.N. Tsiok. Phys. Usp., 55 (11), 1061 (2012)
  8. T. Bryk, F.A. Gorelli, I. Mryglod, G. Ruocco, M. Santoro, T. Scopigno. J. Phys. Chem. Lett., 8 (20), 4995 (2017). DOI: 10.1021/acs.jpclett.7b02176
  9. V.V. Brazkin, C. Prescher, Yu.D. Fomin, E.N. Tsiok, A.G. Lyapin, V.N. Ryzhov, V.B. Prakapenka, J. Stefanski, K. Trachenko, A. Sapelkin. J. Phys. Chem. B, 122 (22), 6124 (2018). DOI: 10.1021/acs.jpcb.7b11359
  10. A.V. Mokshin, R.M. Khusnutdinoff, A.G. Novikov, N.M. Blagoveshchenskii, A.V. Puchkov. J. Experimental Theor. Phys., 121 (5), 828 (2015)
  11. K. Trachenko. Phys. Rev. E, 96, 062134 (2017). DOI: 10.1103/PhysRevE.96.062134
  12. C. Yang, M.T. Dove, V.V. Brazhkin, K. Trachenko. Phys. Rev. Lett., 118, 215502 (2017). DOI: 10.1103/PhysRevLett.118.215502
  13. M. Baggioli, M. Vasin, V.V. Brazhkin, K. Trachenko. Phys. Rev. D, 102, 025012 (2020). DOI: 10.1103/PhysRevD.102.025012
  14. Yu.D. Fomin, V.N. Ryzhov, E.N. Tsiok, J.E. Proctor, C. Prescher, V.B. Prakapenka, K. Trachenko, V.V. Brazhkin. J. Phys.: Condens. Matter., 30, 134003 (2018). DOI: 10.1088/1361-648X/aaaf39
  15. M. Baggioli, A. Zaccone. Phys. Rev. E, 104, 014103 (2021). DOI: 10.1103/PhysRevE.104.014103
  16. A. Zaccone, M. Baggioli. PNAS, 118 (5), e2022303118 (2021). DOI: 10.1073/pnas.2022303118
  17. M. Baggioli, A. Zaccone. Phys. Rev. E, 107, 04610 (2023). DOI: 10.1103/PhysRevE.107.046101
  18. B.-Ch. Xu, R.M. Stratf. J. Chem. Phys., 92 (3), 1923 (1990). DOI: 10.1063/1.458023
  19. T. Keyes. J. Phys. Chem. A, 101, 2921 (1997). DOI: 10.1021/jp963706h
  20. G. Seeley, T. Keyes. J. Chem. Phys., 91, 5581 (1989). DOI: 10.1063/1.457664
  21. B. Madan, T. Keyes. J. Chem. Phys., 98, 3342 (1993). DOI: 10.1063/1.464106
  22. G.V. Vijayadamodar, A. Nitzan. J. Chem. Phys., 103, 2169 (1995). DOI: 10.1063/1.469693
  23. W. Schirmacher, T. Bryk, G. Ruocco. Phys. Rev. E, 106, 066101 (2022). DOI: 10.1103/PhysRevE.106.066101
  24. J. Moon, S. Thebaud, L. Lindsay, T. Egami. Phys. Rev. Res., 6, 013206 (2024). DOI: 10.1103/PhysRevResearch.6.013206
  25. N.P. Kryuchkov, L.A. Mistryukova, A.V. Sapelkin, V.V. Brazhkin, S.O. Yurchenko. Phys. Rev. Lett., 125, 125501 (2020). DOI: 10.1103/PhysRevLett.125.125501
  26. S.V. Stankus, A.R. Khairulin, O.S. Yatsuk. Atomic Energy, 134 (3-4), 150 (2023). DOI: 10.1007/s10512-024-01038-2
  27. Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-Hydraulics and Technologies (OECD-NEA, 2015)
  28. J.K. Fink, L. Leibowitz. Thermodynamic and transport properties of sodium liquid and vapor (Argonne National Laboratory, 1995. ANL/RE-95)
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru