Analysis of Lunar Impactors Using Deep Machine Learning and Neural Networks
Andreev A. O. 1,2, Kolosov Y. A.1, Nefedyev Y. A. 1, Chukhlantseva E. A.1
1Kazan Federal University, Kazan, Russia
2Kazan State Power Engineering University, Kazan, Russia
Email: andreev.alexey93@gmail.com, koloyra@gmail.com, star1955@yandex.ru, Lizaika@list.ru

PDF
The problem of constructing a catalogue of lunar impact craters using deep machine learning and neural network methods is considered. A method was developed for analyzing satellite observations to reveal impact structures on the lunar surface. An analysis of the structure of impact objects and their relationship with slow asteroids was carried out. The created catalogue is planned to be used in the future to assess the content of mineral resources on the Moon. Keywords: near-Earth asteroids, impact craters, neural networks
  1. R. Brasser, S.J. Mojzsis, S.C. Werner, O. Abramov. Icarus, 361, 114389 (2021). DOI: 10.1016/j.icarus.2021.114389
  2. V.V. Shevchenko. Kosmicheskaya tekhnika i tekhnologii, 1 (20), 5 (2018) (in Russian)
  3. D.P. Hamilton. Electronic source. Available at: https://janus.astro.umd.edu/astro/impact/
  4. P.A. Bland, N.A. Artemieva, G.S. Collins, W.F. Bottke, D.B.J. Bussey, K.H. Joy. Lunar and Planetary Science, XXXIX, 2045-1 (2008). https://www.researchgate.net/ publication/236834191_Asteroids_on_the_Moon_Projectile _survival_during_low_velocity_impact
  5. E.J. Speyerer, R.Z. Povilaitis, V.S. Robinson, P.C. Thomas, R.V. Wagner. Nature, 538 (7624), 215 (2016). DOI: 10.1038/nature19829
  6. Z. Yue, B.C. Johnson, D.A. Minton, H.J. Melosh, K. Di, W. Hu, Y. Liu. Nature Geoscience, 6, 435 (2013). DOI: 10.1038/ngeo1828
  7. D. Nesvorny, F.V. Roig, D. Vokrouhlicky, W.F. Bottke, S. Marchi, A. Morbidelli, R. Deienno. Icarus, 399, 115545 (2023). DOI: 10.1016/j.icarus.2023.115545
  8. M.-H. Zhu, N. Artemieva, A. Morbidelli, Q.-Z. Yin, H. Becker, K. Wunnemann. Nature, 571, 226 (2019). DOI: 10.1038/s41586-019-1359-0
  9. O. Sun, W. Fa, M.-H. Zhu, J. Du. Icarus, 404, 115688 (2023). DOI: 10.1016/j.icarus.2023.115688
  10. M.-H. Zhu, A. Morbidelli, W. Neumann, Q.-Z. Yin, J.M.D. Day, D.C. Rubie, G.J. Archer, N. Artemieva, H. Becker, K. Wunnemann. Nature Astronomy, 5, 1286 (2021). DOI: 10.1038/s41550-021-01475-0
  11. Q.-L. Li, Q. Zhou, Y. Liu, Z. Xiao, Y. Lin, J.-H. Li, H.-X. Ma, G.-Q. Tang, S. Guo, X. Tang, J.-Y. Yuan, J. Li, F.-Y. Wu, Z. Ouyang, C. Li, X.-H. Li. Nature, 600, 54 (2021). DOI: 10.1038/s41586-021-04100-2
  12. A.O. Andreeva, E.N. Akhmedshina, L.A. Nefedyev, Yu.A. Nefedyev, N.Yu. Demina. Astronomy Reports, 65 (5), 435 (2021). DOI: 10.1134/S1063772921060019

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru