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The problem of constructing a catalogue of lunar impact craters using deep machine learning and neural network

methods is considered. A method was developed for analyzing satellite observations to reveal impact structures

on the lunar surface. An analysis of the structure of impact objects and their relationship with slow asteroids was

carried out. The created catalogue is planned to be used in the future to assess the content of mineral resources on

the Moon.
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Development of space technologies imposes special re-

quirements for physical and chemical analyses of celestial

objects [1]. This to the full extent refers to dynamic and

planetary physical parameters of the Moon, in particular, to

creating a complex digital selenographic model that gives

an insight into formation of separate craters and any useful

resources existing in them as a result of impacts with

large meteoroids. To solve the problem of future space

resource utilization, near-Earth asteroid substance utilization

projects were developed. On the other hand, according

to [2], utilization of asteroid substance delivered to the

lunar surface might be a more technologically simple and

cost-efficient process. Due to employment of the modern

simulator algorithms [3,4], it has been found that, when

the asteroid fall velocity was lower than 12 km/s, up to

40% of the impact object substance remains in the near-

surface layer in a mechanically crushed state. Monitoring

of impact events on the lunar surface performed by the

LRO (Lunar Reconnaissance Orbiter) mission has shown

that for a total of 222 new craters formed during 7 years

a quarter of these impact events resulted from falling of

”
slow“ asteroids that had a statistically average velocity of

10 km/s [5,6]. The lunar surface contains numerous impact

craters occupying the largest part of it [7]. Lunar impact

craters are related to five lunar geological periods, i.e. to

the Pre-Nectarian, Nectarian, Imbrian, Eratosthenian and

Copernican periods covering about four billion years. Their

formation and evolution reflect the history of the Solar

System interior [8]. Sixteen years of achievements in the

lunar exploration projects (for example, the
”
Moon“ mis-

sions and the
”
Apollo“,

”
LRO“,

”
Kaguya“,

”
Smart-1“ pro-

grams) made it possible to accumulate miscellaneous data,

including digital images, digital elevation models (DEM)
and lunar samples. Space image and DEM data analysis has

identified many lunar impact craters [9], however, manual

discovery subjectivity and automatic discovery restrictions

with various types of data lead to significant differences

in planetary physical properties of craters [10]. Modern

explorations using manual processing methods studied only

a set of simple craters and, thus, irregular-shaped and

severely damaged craters, that could have been formed in

early periods and could carry important information on the

existence of asteroid-origin useful resources in them, were

not accepted for processing [11]. Quantitative characteristics
of craters have sufficiently wide diameter and scale ranges,

and impact event traces on the surface differ significantly

in shape due to crater overlapping or filling and have a

variable and complex morphological structure. We have

developed an automatic impact object discovery algorithms

and software package [12] based on pattern recognition

and machine learning (ML). Neural network model was

generated and trained using ArcGIS software package.

ArcGIS’s Deep Learning module has wide model and

material database for handling intellectual neural networks

(INN). ArcGIS makes it possible to use the resulting trained

INN model to examine other images. This software provides

sampling and categorization of craters according to their

visual characteristics. Lunar surface images obtained using

the LRO mission were used to create a training sample.

Figure 1 shows a manually drawn training material for the

INN model, this material is used to train INN on searching

an object on an image. Most typical craters with clearly

defined walls are marked here. The INN model was trained

during 40 epochs (about one hour), model training quality

is estimated upon completion of this stage. We use an INN

model that fulfils the classification task and also have a data

package, in our case this is an image broken down into

batches, then these batches fully pass the INN model —
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Figure 1. Most typical craters with clearly defined walls from the

LRO mission data.

this is called one epoch. After passing one epoch, the

neuron network activation function (AF) (based on the

gradient descent) takes some value. With each epoch, taking

into account weight setting, this value is better and better

approximated to data. A small number of epochs (iterations)
results in undertraining, while excessive epochs result in

overtraining of the INN model. Overtraining is a situation

when INN on some reason finds a pattern that should not

exist and starts considering it during training. The optimum

number of epochs may be achieved by a so-called
”
cut-off“

function — it plots an activation function (AF) value curve,

and as soon as the value deviates highly, the function will

stop the training procedure, i.e. we can set 100 epochs

manually and on epoch 40 the function will see that the

AF value deviates from the target value and terminate the

training process. The following method is used: a pre-

formed AF and a random number of epochs are set initially,

after cut-off the resulting AF value and a smaller number of

epochs are selected.

Figure 2 left — a manually marked image fragment,

right — marked INN based on training. As shown in the

figure, it cannot be claimed that the INN model discovers

the necessary objects accurately. The model cannot always

highlight the fragments set in the training sample. Model

undertraining is responsible for this problem. At the

same time, objects not included in the training sample

are highlighted, which indicates that the model understands

what it should be trained to do. To improve the performance

of this model, it was decided to increase the training sample

size. A problem arises with small-diameter craters that are

hard to be distinguished due to pixelization when the scale

increases. These small craters may cause contradictions

during INN training. Images with optimum resolution shall

be selected and the absolute number of objects shall be

highlighted on them. Training sample images shall differ

in contrast, angle of rotation and number of objects on the

image for the INN model to be more versatile. This work

reviews 100 000 such objects (altimetric laser monitoring

data obtained from the Clementine, Kaguya and LRO space

missions are used) and samples impact craters by structural

and planetary physical properties using deep machine

leaning and neutron networking methods. Currently the

findings are represented in the form of a preliminary version

of an integrated fundamental digital selenographic catalog of

impact craters distributed in corresponding categories. To

achieve higher accuracy, we continuously increase both the

number of images to be reviewed and the number of lunar

craters. Thus, the final form of the catalog will be available

later. The investigations established that the impact crater

morphology depends on the crater’s physical and chemical

properties, and the crater depth and degradation with time

don’t depend on the surrounding surface relief. The latter

statement makes it possible to determine the type of impact

meteoroids that formed this crater: slow or fast. Slow

meteoroids are those that had a velocity lower than 12 km/s

during collision. If the impact object was slow, then up

Figure 2. Comparison of manual sampling and INN sampling.
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to 40% of its material composition lies close to the crater

boundaries, thus, allowing future mining of useful resources

accumulated near this object.
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