Multiple variations in the electrical capacitance of laser-induced graphene with varying synthesis modes
Mikheev K. G.
1, Zonov R. G.
1, Bulatov D. L.
1, Syugaev A.V.
1, Mikheev G. M.
11Udmurt Federal Research Center, Ural Branch Russian Academy of Sciences, Izhevsk, Russia
Email: k.mikheev@udman.ru, znv@udman.ru, dlbulatov@udman.ru, syual@udman.ru, mikheev@udman.ru
Laser-induced graphene (LIG) is a graphene-like highly porous electrically conductive film-type material synthesized by laser pyrolysis of a carbon-containing dielectric material. This paper reports on the findings regarding the influence of the LIG synthesis modes on its electrical capacitance. Synthesis of LIG was carried out by line-by-line scanning of a cw CO2 laser beam over the polyimide film surface; electrical capacitance of the obtained samples was determined by the two-electrode cyclic voltammetry in the sulfuric acid solution. It was found out that, by reducing the laser beam scanning speed and adjusting the laser power, it is possible to increase the LIG specific capacitance from 2.6 to 27 mF/cm2. Keywords: laser pyrolysis, polyimide film, scanning speed, electrical capacitance.
- Y. Guo, C. Zhang, Y. Chen, Z. Nie, Nanomaterials, 12, 2336 (2022). DOI: 10.3390/nano12142336
- J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E.L.G. Samuel, M.J. Yacaman, B.I. Yakobson, J.M. Tour, Nat. Commun., 5, 5714 (2014). DOI: 10.1038/ncomms6714
- K.G. Mikheev, R.G. Zonov, N.V. Chuchkalov, G.M. Mikheev, Phys. Solid State, 66 (2), 268 (2024). DOI: 10.61011/PSS.2024.02.57924.5
- W. Zhang, Q. Jiang, Y. Lei, H.N. Alshareef, ACS Appl. Mater. Interfaces, 11, 20905 (2019). DOI: 10.1021/acsami.9b05635
- Z. Yin, S. Chen, C. Hu, J. Li, X. Ang, Opt. Laser Technol., 176, 110998 (2024). DOI: 10.1016/j.optlastec.2024.110998
- M. Reina, A. Scalia, G. Auxilia, M. Fontana, F. Bella, S. Ferrero, A. Lamberti, Adv. Sustain. Syst., 6, 2100228 (2022). DOI: 10.1002/adsu.202100228
- K.G. Mikheev, A.V. Syugaev, R.G. Zonov, D.L. Bulatov, G.M. Mikheev, Phys. Solid State, 65 (2), 347 (2023). DOI: 10.21883/PSS.2023.02.55422.529
- X. Yu, N. Li, S. Zhang, C. Liu, L. Chen, S. Han, Y. Song, M. Han, Z. Wang, J. Power Sources, 478, 229075 (2020). DOI: 10.1016/j.jpowsour.2020.229075
- A.V. Syugaev, R.G. Zonov, K.G. Mikheev, A.N. Maratkanova, G.M. Mikheev, J. Phys. Chem. Solids, 181, 111533 (2023). DOI: 10.1016/j.jpcs.2023.111533
- Z. Peng, R. Ye, J.A. Mann, D. Zakhidov, Y. Li, P.R. Smalley, J. Lin, J.M. Tour, ACS Nano, 9, 5868 (2015). DOI: 10.1021/acsnano.5b00436
- W. Song, J. Zhu, B. Gan, S. Zhao, H. Wang, C. Li, J. Wang, Small, 14, 1702249 (2018). DOI: 10.1002/smll.201702249
- R. Ye, D.K. James, J.M. Tour, Adv. Mater., 31, 1803621 (2019). DOI: 10.1002/adma.201803621
- K.G. Mikheev, R.G. Zonov, A.V. Syugaev, D.L. Bulatov, G.M. Mikheev, Phys. Solid State, 64 (5), 579 (2022). DOI: 10.21883/PSS.2022.05.53520.277
- J. de la Roche, I. Lopez-Cifuentes, A. Jaramillo-Botero, Carbon Lett., 33, 587 (2023). DOI: 10.1007/s42823-022-00447-2
- A. Velasco, Y.K. Ryu, A. Hamada, A. de Andres, F. Calle, J. Martinez, Nanomaterials, 13, 788 (2023). DOI: 10.3390/nano13050788
- K.G. Mikheev, R.G. Zonov, T.N. Mogileva, A.E. Fateev, G.M. Mikheev, Opt. Laser Technol., 141, 107143 (2021). DOI: 10.1016/j.optlastec.2021.107143
- I.R. Hristovski, L.A. Herman, M.E. Mitchell, N.I. Lesack, J. Reich, J.F. Holzman, Nanomaterials, 12, 1241 (2022). DOI: 10.3390/nano12081241
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.