Multiple variations in the electrical capacitance of laser-induced graphene with varying synthesis modes
Mikheev K. G. 1, Zonov R. G. 1, Bulatov D. L. 1, Syugaev A.V. 1, Mikheev G. M. 1
1Udmurt Federal Research Center, Ural Branch Russian Academy of Sciences, Izhevsk, Russia
Email: k.mikheev@udman.ru, znv@udman.ru, dlbulatov@udman.ru, syual@udman.ru, mikheev@udman.ru

PDF
Laser-induced graphene (LIG) is a graphene-like highly porous electrically conductive film-type material synthesized by laser pyrolysis of a carbon-containing dielectric material. This paper reports on the findings regarding the influence of the LIG synthesis modes on its electrical capacitance. Synthesis of LIG was carried out by line-by-line scanning of a cw CO2 laser beam over the polyimide film surface; electrical capacitance of the obtained samples was determined by the two-electrode cyclic voltammetry in the sulfuric acid solution. It was found out that, by reducing the laser beam scanning speed and adjusting the laser power, it is possible to increase the LIG specific capacitance from 2.6 to 27 mF/cm2. Keywords: laser pyrolysis, polyimide film, scanning speed, electrical capacitance.
  1. Y. Guo, C. Zhang, Y. Chen, Z. Nie, Nanomaterials, 12, 2336 (2022). DOI: 10.3390/nano12142336
  2. J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E.L.G. Samuel, M.J. Yacaman, B.I. Yakobson, J.M. Tour, Nat. Commun., 5, 5714 (2014). DOI: 10.1038/ncomms6714
  3. K.G. Mikheev, R.G. Zonov, N.V. Chuchkalov, G.M. Mikheev, Phys. Solid State, 66 (2), 268 (2024). DOI: 10.61011/PSS.2024.02.57924.5
  4. W. Zhang, Q. Jiang, Y. Lei, H.N. Alshareef, ACS Appl. Mater. Interfaces, 11, 20905 (2019). DOI: 10.1021/acsami.9b05635
  5. Z. Yin, S. Chen, C. Hu, J. Li, X. Ang, Opt. Laser Technol., 176, 110998 (2024). DOI: 10.1016/j.optlastec.2024.110998
  6. M. Reina, A. Scalia, G. Auxilia, M. Fontana, F. Bella, S. Ferrero, A. Lamberti, Adv. Sustain. Syst., 6, 2100228 (2022). DOI: 10.1002/adsu.202100228
  7. K.G. Mikheev, A.V. Syugaev, R.G. Zonov, D.L. Bulatov, G.M. Mikheev, Phys. Solid State, 65 (2), 347 (2023). DOI: 10.21883/PSS.2023.02.55422.529
  8. X. Yu, N. Li, S. Zhang, C. Liu, L. Chen, S. Han, Y. Song, M. Han, Z. Wang, J. Power Sources, 478, 229075 (2020). DOI: 10.1016/j.jpowsour.2020.229075
  9. A.V. Syugaev, R.G. Zonov, K.G. Mikheev, A.N. Maratkanova, G.M. Mikheev, J. Phys. Chem. Solids, 181, 111533 (2023). DOI: 10.1016/j.jpcs.2023.111533
  10. Z. Peng, R. Ye, J.A. Mann, D. Zakhidov, Y. Li, P.R. Smalley, J. Lin, J.M. Tour, ACS Nano, 9, 5868 (2015). DOI: 10.1021/acsnano.5b00436
  11. W. Song, J. Zhu, B. Gan, S. Zhao, H. Wang, C. Li, J. Wang, Small, 14, 1702249 (2018). DOI: 10.1002/smll.201702249
  12. R. Ye, D.K. James, J.M. Tour, Adv. Mater., 31, 1803621 (2019). DOI: 10.1002/adma.201803621
  13. K.G. Mikheev, R.G. Zonov, A.V. Syugaev, D.L. Bulatov, G.M. Mikheev, Phys. Solid State, 64 (5), 579 (2022). DOI: 10.21883/PSS.2022.05.53520.277
  14. J. de la Roche, I. Lopez-Cifuentes, A. Jaramillo-Botero, Carbon Lett., 33, 587 (2023). DOI: 10.1007/s42823-022-00447-2
  15. A. Velasco, Y.K. Ryu, A. Hamada, A. de Andres, F. Calle, J. Martinez, Nanomaterials, 13, 788 (2023). DOI: 10.3390/nano13050788
  16. K.G. Mikheev, R.G. Zonov, T.N. Mogileva, A.E. Fateev, G.M. Mikheev, Opt. Laser Technol., 141, 107143 (2021). DOI: 10.1016/j.optlastec.2021.107143
  17. I.R. Hristovski, L.A. Herman, M.E. Mitchell, N.I. Lesack, J. Reich, J.F. Holzman, Nanomaterials, 12, 1241 (2022). DOI: 10.3390/nano12081241

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru