Iron-doped diamond-like carbon films: technology and nonlinear electron transport
Vedeneev A.S.
1, Kolodko D.V.
1,2, Kozlov A.M.
1, Luzanov V.A.
1, Sorokin I.A.
1,21Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino, Russia
2National Research Nuclear University “MEPhI”, Moscow, Russia
Email: asv335@fireras.su, kolodko@fireras.su, antares-photo@yandex.ru, valery@luzanov.ru, sorokin@fireras.su
A technology has been developed to synthesize films of iron-doped diamond-like carbon (DLC) using sputtering of an Fe cathode and plasma-chemical deposition of DLC in a hollow-cathode discharge. At a temperature of 373 K, we studied the dependences of the transverse current on time and applied voltage in W/DLC/W samples with DLC thicknesses of 50 and 100 nm and Fe concentrations of 20 atomic %. In these samples, Fe stimulates changes under the action of an electric field due to the hybridization type in high-resistance sp3 areas that separate low-resistance sp2 regions (nanoclusters). Between these regions, hopping transfer of charge carriers occurs. The nonlinearity of the electronic properties of the studied DLC(Fe) films in fields greater than or equal to 105 V/cm is associated with sp3->sp2 transitions in sp3 areas and with field effects under the conditions of hopping conductivity in mesoscopic disordered electronic systems. Keywords: diamond-like carbon, plasma-chemical synthesis, hopping electron transport, hollow-cathode discharge.
- J. Robertson, Mater. Sci. Eng. R, 37, 129 (2002). DOI: 10.1016/S0927-796X(02)00005-0
- P. Koidl, C. Wagner, B. Dischler, J. Wagner, M. Ramsteiner, Mater. Sci. Forum, 52-53, 41 (1990). DOI: 10.4028/www.scientific.net/MSF.52-53.41
- D.R. McKenzie, Rep. Prog. Phys., 59, 1611 (1996). DOI: 10.1088/0034-4885/59/12/002
- Y. Lifshitz, Diamond Relat. Mater., 8, 1659 (1999). DOI: 10.1016/S0925-9635(99)00087
- M.S. Dresselhaus, G. Dresselhaus, K. Sugihara, I.L. Spain, H.A. Goldberg, Graphite fibers and filaments (Springer-Verlag, Berlin, 1988). DOI: 10.1103/ PhysRevB.8.4487
- W.A. Harrison, Phys. Rev. B, 8, 4487 (1973). DOI: 10.1103/PhysRevB.8.4487
- H. Marsh, D. Crawford, D.W. Taylor, Carbon, 21, 81 (1983). DOI: 10.1016/0008-6223(83)90160-4
- X. Liao, X. Zhang, K. Takai, T. Enoki, J. Appl. Phys., 107, 013709 (2010). DOI: 10.1063/1.3280037
- I.A. Sorokin, D.V. Kolodko, K.I. Krasnobaev, J. Commun. Technol. Electron., 65 (3), 286 (2020). DOI: 10.31857/S0033849420030183 [I.A. Sorokin, D.V. Kolodko, K.I. Krasnobaev, J. Commun. Technol. Electron., 65, 286 (2020). DOI: 10.31857/S0033849420030183]
- V.A. Luzanov, A.S. Vedeneev, J. Commun. Technol. Electron., 63, 1068 (2018). DOI: 10.1134/S1064226918090139
- W. Giurlani, M. Innocenti, A. Lavacchi, Coatings, 8, 84 (2018). DOI: 10.3390/coatings8020084
- A.S. Vedeneev, V.A. Luzanov, V.V. Rylkov, JETP Lett., 109, 171 (2019). DOI: 10.1134/S0021364019030147
- S. Takabayasi, M. Yang, S. Ogawa, H. Hayashi, R. Jesko, T. Otsuji, Y. Takakuwa, J. Appl. Phys., 116, 093507 (2014). DOI: 10.1063/1.4894626
- M. Pollak, J.J. Hauser, Phys. Rev. Lett., 31, 1304 (1973). DOI: 10.1103/PhysRevLett.31.1304
- M.E. Reich, I.M. Ruzin, JETP Lett., 43, 562 (1986)
- B.I. Shklovsky, Sov. Phys. Semicond., 13, 53 (1979)
- B.A. Aronzon, D.Yu. Kovalev, V.V. Ryl'kov, Semiconductors, 39, 811 (2005). DOI: 10.1134/1.1992640.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.