Josephson type current-voltage characteristics of chemically modified graphite at room temperature and normal pressure
Ionov A.N.1, Ankudinov A.V.1, Nikolaeva M.N.2, Bugrov A.N.2,3
1Ioffe Institute, St. Petersburg, Russia
2Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
3St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
Email: ionov.tuch@mail.ioffe.ru
This work shows that Josephson type current-voltage characteristics are observed up to room temperature at normal pressure for hybrid particles based on polystyrene and multilayer reduced graphene oxide. The deformation of sheets of multilayer reduced graphene oxide during its functionalization with methacrylate groups, copolymerization with styrene and exposure to a toluene solution in the cross-linked structure leads to the appearance of superconductivity in the resulting hybrid flakes. Moreover, with an increase in the magnetic field or temperature above the critical one, the Josephson type of current-voltage characteristics for them reversibly changes to ohmic. Keywords: Reduced graphene oxide, superconductivity, hybrid material, polystyrene.
- K. Antonowicz, Nature, 247, 358 (1974). DOI: 10.1038/247358a0
- K. Antonowicz, Phys. Status Solidi A, 28, 497 (1975). DOI: 10.1002/pssa.2210280214
- Y. Kopelevich, P. Esquinazi, J.H.S. Torres, S. Moehlecke, J. Low Temp. Phys., 119, 691 (2000). DOI: 10.1023/A:1004637814008
- P. Esquinazi, N. Garcia, J. Barzola-Quiquia, P. Rodiger, K. Schinder, J.-L. Yao, M. Ziese, Phys. Rev. B, 78, 134516 (2008). DOI: 10.1103/PhysRevB.78.134516
- A. Ballestar, J. Barzola-Quiquia, T. Scheike, P. Esquinazi, New J. Phys., 15, 023024 (2013). DOI: 10.1088/1367-2630/15/2/023024
- Y. Kawashima, AIP Adv., 3, 052132 (2013). DOI: 10.1063/1.4808207
- M. Zoraghi, J. Barzola-Quiquia, M. Stiller, A. Setzer, P. Esquinazi, G.H.Kloess, T. Muenster, T. Luhmann, I. Estrela-Lopis, Phys. Rev. B, 95, 045308 (2017). DOI: 10.1103/physrevb.95.045308
- M. Saad, I.F. Gilmutdinov, A.G. Kiiamov, D.A. Tayurskii, S.I. Nikitin, R.V. Yusupov, JETP Lett., 107 (1), 37 (2018). DOI: 10.1134/S0021364018010101
- S.G. Lebedev, J. Mater. Sci.: Mater Electron, 31, 20883 (2020). DOI: 10.1007/s10854-20-04603-0
- M.A.H. Vozmediano, M.I. Katsnelson, F. Guinea, Phys. Rep., 496, 109 (2010). DOI: 10.1016/j.physrep.2010.07.003
- N. Levy, S.A. Burke, K.L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A.H. Castro Neto, M.F. Crommie, Science, 329, 544 (2010). DOI: 10.1126/science.1191700
- A.N. Ionov, Tech. Phys. Lett., 41 (7), 651 (2015). DOI: 10.1134/S1063785015070093
- A.N. Ionov, J. Low Temp. Phys., 185, 515 (2016). DOI: 10/1007/s10909-015-1459-7
- A.N. Ionov, M.P. Volkov, M.N. Nikolaeva, JETP Lett., 109 (3), 163 (2019). DOI: 10.1134/S0021364019030111
- A.N. Ionov, M.P. Volkov, M.N. Nikolaeva, R.Y. Smyslov, A.N.Bugrov, Materials, 14, 2519 (2021). DOI: 10.3390/ma14102519
- A.N. Ionov, M.P. Volkov, M.N. Nikolaeva, R.Y. Smyslov, A.N. Bugrov, Nanomaterials, 11, 403 (2021). DOI: 10.3390/nano11020403
- https://www.ntmdt-si.ru/products/afm-features/hybrid-mode
- B. Uchoa, Y. Barlas, Phys. Rev. Lett., 111, 046604 (2013). DOI: 10.1103/PhysRevLett.111.046604
- Y. Kopelevich, J. Torres, R. da Silva, F. Oliveira, M.C. Diamantini, C. Trugenberger, V. Vinokur, Adv. Quantum Technol., 7, 2300230 (2024). DOI: 10.1002/qute.202300230
- I.I. Kulakova, G.V. Lisichkin, Russ. J. Gen. Chem., 90 (10), 1921 (2020). DOI: 10.1134/S1070363220100151
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.