Halogenomethanes molecules fragmentation at interaction with ions
Smirnov O.V.1, Basalaev A.A.1, Kuz’michev V.V.1, Panov M.N.1, Simon K.V.1
1Ioffe Institute, St. Petersburg, Russia
Email: Oleg.Smirnov@mail.ioffe.ru

PDF
The mechanism of fragmentation of isolated molecules of carbon tetrachloride CCl4 and the simplest chlorofluorocarbons CFC-12 (CCl2F2), CFC-13 (CClF3) at the single electron capture by H+, He2+ and Ar6+ ions keV energy has been studied. It is shown that the main process during the ionization of the molecules under study is the process of elimination of atomic chlorine. The formation of an undissociated molecular ion M+ is observed only for CF3Cl and CCl2F2 molecules, for which the process of elimination of atomic fluorine is significantly less probable than chlorine. The parameters of molecules and singly charged halogenomethane ions were calculated using the multiconfiguration method of self-consistent field in total active space (CASSCF). For the experimentally observed main channels of fragmentation of these ions, reaction paths are considered within the framework of the CASSCF method. Keywords: electron capture, chlorofluorocarbons, halogenomethane, fragmentation of molecular ions, mass spectrometry, multi-configuration self-consistent field method.
  1. IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller. (Cambridge University Press, Cambridge, United Kingdom NY., USA, 2007), 996 p
  2. World Meteorological Organization. Scientific Assessment of Ozone Depletion: 2010. Global Ozone Research and Monitoring Project, Report N 52. Geneva, (2011).
  3. X. Fang, S. Park, T. Saito, R. Tunnicliffe, A.L. Ganesan, M. Rigby, S. Li, Y. Yokouchi, P.J. Fraser, C.M. Harth, P.B. Krummel, J. Muhle, S. O'Doherty, P.K. Salameh, P.G. Simmonds, R.F. Weiss, D. Young, M.F. Lunt, A.J. Manning, A. Gressent, R.G. Prinn. Nature Geoscience, 12, 89 (2019). https://doi.org/10.1038/s41561-018-0278-2
  4. F.S. Rowland. Annu. Rev. Phys. Chem., 42, 731 (1991)
  5. M.K. Vollmer, D. Young, C.M. Trudinger, J. Muhle, S. Henne, M. Rigby, S. Park, S. Li, M. Guillevic, B. Mitrevski, C.M. Harth, B.R. Miller, S. Reimann, B. Yao, L.P. Steele, S.A. Wyss, C.R. Lunder, J. Arduini, A. McCulloch, S. Wu, T.S. Rhee, R.H.J. Wang, P.K. Salameh, O. Hermansen, M. Hill, R.L. Langenfelds, D. Ivy, S. O'Doherty, P.B. Krummel, M. Maione, D.M. Etheridge, L. Zhou, P.J. Fraser, R.G. Prinn, R.F. Weiss, P.G. Simmonds. Atmos. Chem. Phys., 18, 979 (2018). https://doi.org/10.5194/acp-18-979-2018
  6. S.J. Walker, R.F. Weiss, P.K. Salameh. J. Geophys. Res., 105 (C6), 14285 (2000)
  7. D. Chakraborty, D. Nandi. Phys. Rev. A, 102, 052801 (2020). DOI: 10.1103/PhysRevA.102.0528
  8. E. Kokkonen, K. Jankala, M. Patanen, W. Cao, M. Hrast, K. Buv car, M. v Zitnik, M. Huttula. J. Chem. Phys., 148, 174301 (2018). https://doi.org/10.1063/1.5026720
  9. W. Zhang, G. Cooper, T. Ibuki, C.E. Brion. Chem. Phys., 137, 391 (1989)
  10. A.F. Lago, A.C.F. Santos, G.G.B. de Souza. J. Chem. Phys., 120, 9547 (2004)
  11. D.A. Shaw, D.M.P. Holland, I.C. Walker. J. Phys. B: At. Mol. Opt. Phys., 39, 3549 (2006)
  12. A.C.F. Santos, D.N. Vasconcelos, M.A. MacDonald, M.M. Sant'Anna, B.N.C. Tenorio, A.B. Rocha, V. Morcelle, V.S. Bonfim, N. Appathurai, L. Zuin. J. Phys. B: At. Mol. Opt. Phys., 54, 015202 (2021). https://doi.org/10.1088/1361-6455/abc9cc
  13. G. Allcock, J.W. McConkey. J. Phys. B: Atom. Molec. Phys., 11, 741 (1978). DOI: 10.1088/0022-3700/11/4/021
  14. K. Leiter, K. Stephan, E. Mark, T.D. Mark. Plasma Chem. Plasma Process., 4 (4), 235 (1984)
  15. R. Martinez, F. Castano, M.N. Sanchez Rayo. J. Phys. E: At. Mol. Opt. Phys., 25, 4951 (1992)
  16. B.G. Lindsay, K.F. McDonald, W.S. Yu, R.F. Stebbings, F.B. Yousif. J. Chem. Phys., 121, 1350 (2004). DOI: 10.1063/1.1761055
  17. B. Sierra, R. Marti nez, C. Redondo, F. Castano. Int. J. Mass Spectr., 246, 105 (2005). DOI: 10.1016/j.ijms.2005.08.006
  18. M. Tarana, K. Houfek, J. Horav cek, I.I. Fabrikant. Phys. Rev. A, 84, 052717 (2011). DOI: 10.1103/PhysRevA.84.052717
  19. V.V. Afrosimov, A.A. Basalaev, B. Fastrup, E. Horsdal-Pedersen, M.N. Panov, A.V. Tulub, D.S. Yakovlev. J. Phys. B: At. Mol. Opt. Phys., 36, 1991 (2003)
  20. D. Wang, Y. Fan, Z. Zhao, G. Min, X. Zhang. J. Phys. B: At. Mol. Opt. Phys., 49, 165201 (2016). DOI: 10.1088/0953-4075/49/16/165201
  21. N. Das, S. De, P. Bhatt, C.P. Safvan, A. Majumdar. J. Chem. Phys., 158, 084307 (2023). DOI: 10.1063/5.0135440
  22. G.M.J. Barca, C. Bertoni, L. Carrington, D. Datta, N. De Silva, J.E. Deustua, D.G. Fedorov, J.R. Gour, A.O. Gunina, E. Guidez, T. Harville, S. Irle, J. Ivanic, K. Kowalski, S.S. Leang, H. Li, W. Li, J.J. Lutz, I. Magoulas, J. Mato, V. Mironov, H. Nakata, B.Q. Pham, P. Piecuch, D. Poole, S.R. Pruitt, A.P. Rendell, L.B. Roskop, K. Ruedenberg, T. Sattasathuchana, M.W. Schmidt, J. Shen, L. Slipchenko, M. Sosonkina, V. Sundriyal, A. Tiwari, J.L. Galvez Vallejo, B. Westheimer, M. W och, P. Xu, F. Zahariev, M.S. Gordon. J. Chem. Phys., 152 (15), 154102 (2020). https://doi.org/10.1063/5.0005188
  23. NIST Mass Spectrometry Data Center, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Eds. P.J. Linstrom, W.G. Mallard (Gaithersburg MD, 20899), https://doi.org/10.18434/T4D303
  24. A.V. Tulub, K.V. Simon. J. Struct, Chem. 48 (Suppl.) S79 (2007)
  25. N.S. Ham. Uspekhi khimii, XXXII (8), 1010 (1963) (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru