Graphene-type sorbents for the elimination of mycotoxin T-2
Voznyakovskii A.P. 1, Karmanov A.P. 2, Neverovskaya A.Yu. 1, Kocheva L. S. 2, Vozniakovskii A. A. 3, Kanarskii A.V.4, Semenov E.I. 4, Kidalov S. V. 3
1S.V. Lebedev research Institute for Synthetic Rubber, Saint-Petersburg, Russia
2Institute Biology Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
3Ioffe Institute, St. Petersburg, Russia
4Federal State Budgetary Scientific Institution «Federal Center for toxicological, radiation, and biological safety, Kazan, Russia
Email: voznap@mail.ru, apk0948@yandex.ru, anna-neverovskaya@yandex.ru, karko07@mail.ru, alexey_inform@mail.ru, alb46@mail.ru, semyonovei@bk.ru, kidalov@mail.ioffe.ru

PDF
A comparative study of sorbents based on several natural biopolymers and their carbonized products - few-layer graphenes obtained under the self-propagating high-temperature synthesis process - was conducted using the example of mycotoxin T-2 sorption. The studies show that the efficiency of mycotoxin T-2 sorption by few-layer graphenes in all indicators, including the irreversible sorption indicator, significantly exceeds similar characteristics for the original biopolymers (sulfate lignin, microcellulose, pine bark, birch lignin). The adsorbents were also studied using the low-temperature nitrogen adsorption method. Keywords: mycotoxin sorption, mycotoxin T-2, lignin, few-layer graphene.
  1. L. Channaiah, M. Morales. Intern. Food Hygiene, 26 (2), 7 (2015)
  2. M. Eskola, G. Kos, C.T. Elliott, J. Hajslova, S. Mayar, R. Krska. Critical Reviews in food Science and Nutrition, 60 (16), 2773 (2020). DOI: 10.1080/10408398.2019.1658570
  3. R. Colovic, N. Puvaca, F. Cheli, G. Avantaggiato, D. Greco, O. -Duragic, J. Kos, L. Pinotti. Toxins, 11, 617 (2019). DOI: 10.3390/toxins11110617
  4. S. Ndiaye, M. Zhang, M. Fall, N.M. Ayessou, Z. Qi, P. Li. Toxins, 14, 729 (2022). DOI: 10.3390/toxins14110729
  5. P. Bajpai. Pulp and Paper Industry: Chemical Recovery (Elsevier Science Ltd, 1984)
  6. I.B. Johns, E.A. McElhill, J.O. Smith. Ind. Eng. Chem. Prod. Res. Dev., 1 (1), 2 (1962). DOI: 10.1021/i360001a001
  7. N. Magan, D. Aldred. Intern. J. Food Microbiol., 119 (1-2), 131 (2007). DOI: 10.1016/j.ijfoodmicro.2007.07.034
  8. L. Channaiah. Microbiology, 5, 5 (2014). DOI: 10.5772/intechopen.92845
  9. C.H. Di az Nieto, A.M. Granero, M.A. Zon, H. Fernandez. Food Chem. Toxicol., 118, 460 (2018). DOI: 10.1016/j.fct.2018.05.057
  10. C. Viegas, J. Nurme, E. Pieckova, S. Viegas. Mycology, 11 (2), 91 (2018). DOI: 10.1080/21501203.2018.1492980
  11. K.H. Papunidi. Kombinirovannye porazheniya zhivotnyh i razrabotka sredstv profilaktiki i lecheniya: monografiya (FGBNU "FCTRB-VNIVI", Kazan, 2019) (in Russian)
  12. P. Vila-Donat, S. Marin, V. Sanchis, A.J. Ramos. Food Chem. Toxicol., 114, 246 (2018). DOI: 10.1016/j.fct.2018.02.044
  13. G.M. Hamad, T. Mehany, J. Simal-Gandara, S. Abou-Alella, O.J. Esua, M.A. Abdel-Wahhab, E.E. Hafez. Food Control, 144, 109350 (2023). DOI: 10.1016/j.foodcont.2022.109350
  14. S. Paul, S.K. Bhardwaj, R. Kaur, J. Bhaumi. ACS Symposium Series, 1348 (8), 225 (2020). DOI: 10.1021/bk-2020-1348.ch008
  15. A.P. Karmanov, A.V. Kanarsky, L.S. Kocheva, E.I. Semenov, V.A. Belyy. Reactive Functional Polymers, 167 (2021). DOI: 10.1016/j.reactfunctpolym.2021.105033
  16. N.I. Fayzullayev, K.N. Kholmirzayeva. Nano Tech. Nano Sci., 16 (6), 160 (2022). DOI: 10.17586/2220-8054-2022-13-5-514-524
  17. J. Jampi lek, K. Kralova. In Nanomycotoxicology (Academic Press, 2020), ch. 15, p. 349-383. DOI: 10.1016/B978-0-12-817998-7.00015-X
  18. P. Horky, S. Skalickova, D. Baholet, J. Skladanka. Nanomaterials, 8 (9), 727 (2018)
  19. P. Horky, E. Venusova, T. Aulichova, A. Ridoskova, J. Skladanka, S. Skalickova. PLoS ONE, 15 (9), e0239479 (2020). DOI: 10.1371/journal.pone.0239479
  20. Z. Bytesnikova, V. Adam, L. Richtera. Food Control., 121, 107611 (2021). DOI: 10.1016/j.foodcont.2020.107611
  21. C. Song, J. Qin. Intern. J. Food Sci. Technol., 57, 5781 (2022). DOI: 10.1111/ijfs.15953
  22. A.V. Taratayko, G.V. Mamontov. Vestnik TomGU. Khimiya, 30, 67 (2023) (in Russian). DOI: 10.17223/24135542/30/6
  23. A.P. Voznyakovskii, A.A. Vozniakovskii, S.V. Kidalov. Nanomaterials, 12 (4), 657 (2022). DOI: 10.3390/nano12040657
  24. S.A. Outlov, N.G. Bazarnova, E.Yu. Kushnir. Khimiya rastitel'nogo syr'ya, 3, 33 (2013) (in Russian). DOI: 10.14258/jcprm.1303033
  25. A. Vozniakovskii, S. Kidalov, A. Vozniakovskii, A. Karmanov, L. Kocheva, N. Rachkova. Fullerenes, Nanotubes and Carbon Nanostructures, 28 (3), 238 (2020). DOI: 10.1080/1536383x.2019
  26. S.M. Krutov, A.P. Voznyakovskii, A.A. Gordin, D.I. Savkin, I.V. Shugalei. Russ. J. General Chem., 85 (13), 2898 (2015). DOI: 10.1134/S1070363215130058
  27. A.Yu. Neverovskaya, A.P. Voznyakovskii, L.T. Krupskaya, I.V. Shugalei, A.A. Vozniakovskii. Russ. J. General Chem., 93 (13), 3464 (2023). DOI: 10.1134/S1070363223130303
  28. A.P. Karmanov, A.V. Kanarsky, Z.A. Kanarskaya, L.S. Kocheva, E.I. Semenov, N.I. Bogdanovich, V.A. Belyy. Intern. J. Biol. Macromolecules, 144, 111 (2020). DOI: 10.1016/j.ijbiomac.2019.12.081

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru