Graphene nanostrips based IR range detector
I.V. Ivashentseva1, P.V. Fedotov2,3, N.S. Kaurova1, M.G. Rybin2, E.D. Obraztsova2,3, I.V. Tretyakov4, I.V. Tretyakov1
1Moscow Pedagogical State University, Moscow, Russia
2Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
3Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
4Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: ivantretykov@mail.ru

PDF
The work presents a technology for sensitizing a structure consisting of a graphene nanostrip on a Si/GNR silicon substrate in the near-IR range of the electromagnetic spectrum based on doping a GNR graphene nanostrip with He4. The response has been experimentally demonstrated to increase by more than 25 times at a wavelength of 1.35 μm in the Si/GNR/He4 structure compared to undoped Si/GNR. Also, the Si/GNR_He4 structure exhibits pronounced multi-level memristor properties under the influence of IR radiation. Keywords: graphene, graphene nanostrip, IR range, detector.
  1. L. Du, Z. Wu, R. Li, F. Tang, Y. Jiang. Opt. Lett., 41 (I), 5031(2016). DOI: 10.1364/OL.41.005031
  2. H. Zhang, J.-H. Choi, Y. Xu, X. Wang, X. Zhai, B. Wang, C. Zeng, J.-H. Cho, Z. Zhang, J. G. Hou. Phys. Rev. Lett., 106 (2-14), 026801 (2011). DOI: 10.1103/PhysRevLett.106.026801
  3. X.Y. Wang, Y.G. Huang, D.W. Liu, X.N. Zhu, H.L. Zhu. Chin. Phys. Lett., 30 (3), 036101 (2013). DOI: 10.1088/0256-307X/30/3/036101
  4. S. Hu, P. Han, S. Wang, X. Mao, X. Li, L. Gao. Semicond. Sci. Technol., 27, 102002 (2012). DOI: 10.1088/0268-1242/27/10/102002
  5. J.P. Mailoa, A.J. Akey, C.B. Simmons, D. Hutchinson, J. Mathews, J.T. Sullivan, D. Recht, M.T. Winkler, J.S. Williams, J.M. Warrender, P.D. Persans, M.J. Aziz, T. Buonassisi. Nat. Commun., 5, 3011 (2013). DOI: 10.1038/ncomms4011
  6. E. Garcia-Hemme, R. Garcia-Hernansanz, J. Olea, D. Pastor, A. del Prado, I. Martil, G. Gonzalez-Diaz. J. Phys. D: Appl. Phys., 104, 211105 (2014). DOI: 10.1088/0022-3727/49/27/2751
  7. C.B. Simmons, A.J. Akey, J.P. Mailoa, D. Recht, M.J. Aziz, T. Buonassisi. Adv. Functional Mater., 24, 2852 (2014). DOI: 10.1002/adfm.201303820
  8. E. Perez, H. Castan, H. Garci a, S. Duenas, L. Bailon, D. Montero, R. Garci a-Hernansanz, E. Garci a-Hemme, J. Olea, G. Gonzalez-Di az. Appl. Phys. Lett., 106, 022105. DOI: 10.1063/1.490578
  9. C.B. Simmons, A.J. Akey, J.J. Krich, J.T. Sullivan, D. Recht, M.J. Aziz, T. Buonassisi. J. Appl. Phys., 114, 243514 (2013). DOI: 10.1063/1.4854835
  10. A.J. Said, D. Recht, J.T. Sullivan, J.M. Warrender, T. Buonassisi, P.D. Persans, M.J. Aziz. Appl. Phys. Lett., 99, 073503 (2011). DOI: 10.1063/1.3609871
  11. X. Li, J.E. Carey, J.W. Sickler, M.U. Pralle, C. Palsule, C.J. Vineis. 20 (5), 5518 (2012). DOI: 10.1364/OE.20.005518
  12. Z. Yan, C. Li, Y. Luo, J. Zhao, H. Yang, P. Verma, S. Kawata. Chin. Opt. Lett., 13 (10), 102401 (2015). DOI: 10.3788/COL201513.102401
  13. X. Qiu, X. Yu, S. Yuan, Y. Gao, X. Liu, Y. Xu, D. Yang. 6, 1700638 (2018). DOI: 10.1002/adom.201700638
  14. A.C. Ferrari, F. Bonaccorso, V. Falko, K.S. Novoselov, S. Roche, P. B ggild, S. Borini, F.H. L. Koppens, V. Palermo, N. Pugno, J.A. Garrido, R. Sordano, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J.N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G.F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A.N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G.M. Williams, B.H. Hong, Jong-Hyun, J.M. Kim, H. Zirath, B.J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I.A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S.R.T. Neil, Q. Tannock, T. Lofwander, J. Kinaret. Nanoscale, 7, 4598 (2015). DOI: 10.1039/C4NR01600A
  15. A. Pospischil, M. Humer, M.M. Furchi, D. Bachmann, R. Guider, T. Fromherz, T. Mueller. Nature Photon., 7 (11), 892 (2013). DOI: 10.1038/NPHOTON.2013.240
  16. X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T.F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund. Nature Photon., 7, 883 (2013). DOI: 10.1038/nphoton.2013.253
  17. X. Wang, Z. Cheng, K. Xu, H.K. Tsang, J.B. Xu. Nature Photon., 7 (11), 888 (2013). DOI: 10.1038/NPHOTON.2013.241
  18. F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A.P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S.J. Haigh, A.K. Geim, A.I. Tartakovskii., K.S. Novoselov. Nat Mater., 14 (3), 301 (2015). DOI: 10.1038/nmat4205
  19. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang. Nature, 4474 (7349), 64 (2011). DOI: 10.1038/nature10067
  20. D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A.L. Giesecke, H. Kurz. ACS Photon., 1 (9), 781 (2014). DOI: 10.1021/ph5001605
  21. F.H. Koppens, T. Mueller, P. Avouris, A.C. Ferrari, M.S. Vitiello, M. Polini. Nat. Nanotechnol. 9 (10), 780 (2014). DOI: 10.1038/nnano.2014.215
  22. W. Guo, S. Xu, Z. Wu, N. Wang, M.M. T. Loy, S. Du. 9, 3031 (2013). DOI:10.1002/smll.201370110
  23. Z. Sun, Z. Liu, J. Li, G.-an Tai, S.-P. Lau, F. Yan. Adv. Mater., 24 (43), 5878 (2012), DOI: 10.1002/adma.201202220
  24. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F.P. Garcia de Arquer, F. Gatti, F.H. Koppens. National Nanotechnol., 7 (6), 363 (2012). DOI: 10.1038/nnano.2012.60
  25. M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, P. Avouris. Nature Commun., 4, 1951 (2013). DOI: 10.1038/ncomms2951
  26. M. Badioli, A. Woessner, K.J. Tielrooij, S. Nanot, Navickaite, T. Stauber, F.J. Garci a de Abajo, F.H.L. Koppens. Nano Lett., 14 (11), 6374 (2014). DOI: 10.1021/nl502847v
  27. X. Cai, A.B. Sushkov, R.J. Suess, M.M. Jadidi, G.S. Jenkins, L.O. Nyakiti, R.L. Myers-Ward, S. Li, J. Yan, D.K. Gaskill, T.E. Murphy, H.D. Drew, M.S. Fuhrer. National Nanotechnol., 9, 814 (2014). DOI: 10.1038/nnano.2014.182
  28. L. Vicarelli, M.S. Vitiello, D. Coquillat, A. Lombardo, A.C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci. Nature Mater., 11, 865 (2012). DOI: 10.1038/nmat3417
  29. J. Dauber, A.A. Sagade, M. Oellers, K. Watanabe, T. Taniguchi, D. Neumaier, C. Stampfer, Appl. Phys. Lett., 106 (19), (2015). DOI: 10.1063/1.4919897
  30. L. Huang, H. Xu, Z. Zhang, C. Chen, J. Jiang, X. Ma, B. Chen, Z. Li, H. Zhong, L.-M. Peng. Sci. Rep., 4, 5548 (2014). DOI: 10.1038/srep05548
  31. Q. Wang, W. Hong, L. Dong. Nanoscale, 8, 7663 (2016). DOI: 10.1039/C5NR09274D
  32. M. Pumera, A. Ambrosi, A. Bonanni, E.L.K. Chng, H.L. Poh. Trends Analyt. Chem., 29 (9), 954 (2010). DOI: 10.1016/j.trac.2010.05.011
  33. A.D. Smith, K. Elgammal, F. Niklaus, A. Delin, A.C. Fischer, S. Vaziri, F. Forsberg, M. R sander, H. Hugosson, L. Bergqvist, S. Schroder, S. Kataria, M. Ostling, M.C. Lemme. Nanoscale, 7, 19099 (2015). DOI: 10.1039/C5NR06038A
  34. Y. Wu, Y.-m. Lin, A.A. Bol, K.A. Jenkins, F. Xia, D.B. Farmer, Y. Zhu, P. Avouris. Nature, 472, 74 (2011). DOI: 10.1038/nature09979
  35. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis. National Nanotechnol., 6 (3), 147 (2011). DOI: 10.1038/nnano.2010.279
  36. S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J.J. Piqueras, R. Perez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galan, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, F. Koppens. Nature Photon., 11, 366 (2017). DOI: 10.1038/nphoton.2017.75
  37. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F.P. Garcia de Arquer, F. Gatti, F.H. Koppens. National Nanotechnol., 7 (6), 363 (2012). DOI: 10.1038/nnano.2012.60
  38. Z. Sun, Z. Liu, J. Li, G.-A. Tai, S.-P. Lau, F. Yan. Adv. Mater., 24 (43), 5878 (2012). DOI: 10.1002/adma.201202220
  39. A.V. Klekachev, M. Cantoro, M.H. Van Der Veen, A.L. Stesmans, M.M. Heyns, S. De Gendt. Physi. E: Low-Dimensional Systems and Nanostructures, 43 (5), 1046 (2011). DOI: 10.1016/j.physe.2010.12.012
  40. W. Guo, S. Xu, Z. Wu, N. Wang, M.M.T. Loy, S. Du. Small, 9 (18), 3031 (2013). DOI: 10.1002/smll.201370110
  41. S.A. McDonald, G. Konstantatos, S. Zhang, P.W. Cyr., E.J.D. Klem, L. Levina, E.H. Sargent. Nature Mater., 4, 138 (2005)
  42. V. Barone, O. Hod, G.E. Scuseria. Nano Lett., 6 (12), 2748 (2006). DOI: 10.1021/nl0617033
  43. L. Yang, C.H. Park, Y.W. Son, M.L. Cohen, S.G. Louie. Phys. Rev. Lett., 99 (18), 186801 (2007). DOI: 10.1103/PhysRevLett.99.186801
  44. P.B. Bennett, Z. Pedramrazi, A. Madani, Y.-C.Chen, D.G. de Oteyza, C. Chen, F.R. Fischer, M.F. Crommie, J. Bokor. J. Appl. Phys. Lett., 103 (25), (2013). DOI: 10.1063/1.4855116
  45. J.P. Llinas, A. Fairbrother, G. Borin Barin, W. Shi, K. Lee, S. Wu, B.Y. Choi, R. Braganza, J. Lear, N. Kau, W. Choi, C. Chen, Z. Pedramrazi, T. Dumslaff, A. Narita, X. Feng, K. Mullen, F. Fischer, A. Zettl, P. Ruffieux, E. Yablonovitch, M. Crommie, R. Fasel, J. Bokor. Nature Commun., 8 (1), 633 (2017). DOI: 10.1038/s41467-017-00734-x
  46. B. Jeong, M. Wuttke, Y. Zhou, K. Mullen, A. Narita, K. Asadi. ACS Appl. Electron. Mater., 4, 2667 (2022). DOI: 10.31613/ceramist.2022.25.4.05
  47. D. Prezzi, D. Varsano, A. Ruini, A. Marini, E. Molinari. Phys. Rev. B, 77, 041404 (2008). DOI: 10.1103/PhysRevB.77.041404
  48. X. Zhu, H. Su. J. Phys. Chem. A, 115, 11998 (2011). DOI: 10.1021/jp202787h
  49. P.V. Fedotov, D.V. Rybkovskiy, A.I. Chernov, E.A. Obraztsova, E.D. Obraztsova. J. Phys. Chem. C, 124, 25984 (2020). DOI: 10.1021/acs.jpcc.0c07369
  50. P.V. Fedotov, E.D. Obraztsova. Appl. Phys. Lett., 122, 013101 (2023). DOI: 10.1063/5.0131405
  51. P.V. Fedotov, D.V. Rybkovskiy, I.V. Novikov, E.D. Obraztsova. Phys. Status Solidi (b), 259, 2100501 (2022). DOI: 10.1002/pssb.202100501
  52. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A.P. Seitsonen, M. Saleh, X. Feng, K. Mullen, R. Fasel. Nature, 466, 470-3 (2010). DOI: 10.1038/nature09211
  53. G. Borin Barin, A. Fairbrother, L. Lukas Rotach, M. Bayle, M. Paillet, L. Liang, V. Meunier, R. Hauert, T. Dumslaff, A. Narita, K. Mullen, H. Sahabudeen, R. Berger, X. Feng, R. Fasel, P. Ruffieux. ACS Appl. Nano Mater., 2, 2184 (2019). DOI: 10.1021/acsanm.9b00151
  54. H. Huang, D. Wei, J. Sun., S.L. Won, Y. P. Feng, A.C. Neto, A.T.S. Wee, Scientific Reports, 2 (1), 983 (2012). DOI: 10.1038/srep00983
  55. J. Zhou, J. Dong. Appl. Phys. Lett., 91 (17), (2007). DOI: 10.1063/1.2800796
  56. R. Gillen, M. Mohr, C. Thomsen, J. Maultzsch. Phys. Rev. B, 80 (15), 155418 (2009). DOI: 10.1103/PhysRevB.80.155418

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru