Quantitative local elemental composition analysis of the of materials by EELS technique in STEM under conditions of core-loss lines overlapping
Prikhodko K. E. 1,2, Dement'eva M.M. 1
1National Research Center “Kurchatov Institute”, Moscow, Russia
2National Research Nuclear University “MEPhI”, Moscow, Russia
Email: prihodko_ke@nrcki.ru

PDF
A method has been developed for processing spectra of characteristic electron energy losses for quantitative analysis of atomic concentrations of elements within the framework of STEM in conditions of close proximity of lines of various elements. In addition, the case of the presence of features on the spectra of energy losses is considered, which, in turn, makes it difficult to isolate the background within the framework of a standard analysis. Using the example of the study of the atomic composition of a thin NbN film, it is shown that the dispersion of the obtained concentration values for various points of the sample is reduced to several atomic percent. Keywords: Characteristic electron energy loss spectroscopy (EELS), transmission scanning electron microscopy (STEM), high-resolution transmission electron microscopy, NbN thin superconducting films, background subtraction in EELS, overlapping of characteristic loss lines.
  1. K.E. Prikhod'ko, M.M. Dement'eva. Crystallography Reports, 66 (4), 656 (2021). DOI: 10.1134/S1063774521040180
  2. B. Evin, E. Leroy, M. Segard, V. Paul-Boncour, S. Challet, A. Fabre, M. Latroche. J. Alloys Compd. Elsevier, 878, 160267 (2021). DOI: 10.1016/j.jallcom.2021.160267
  3. S. Frechard, M. Walls, M. Kociak, J.P. Chevalier, J. Henry, D. Gorse. J. Nucl. Mater., 393 (1), 102 (2009). DOI: 10.1016/j.jnucmat.2009.05.011
  4. M. Miyamoto, K. Sano, T. Sawae, M. Haruta, H. Kurata. J. Nucl. Mater. Energy, 36, 101484 (2023). DOI: 10.1016/j.nme.2023.101484
  5. H. Ikeno, T. Mizoguchi. Microscopy, 66 (5), 305 (2017). DOI: 10.1093/jmicro/dfx033
  6. D. Bouchet, C. Colliex. Ultramicroscopy, 96 (2), 139 (2003). DOI: 10.1016/S0304-3991(02)00437-0
  7. P. Schattschneider, M. Stoger, C. Hebert, B. Jouffrey. Ultramicroscopy, 93 (2), 91 (2002). DOI: 10.1016/s0304-3991(02)00144-4
  8. S. Muto, H. Sugiyama, T. Kimura, T. Tanabe, T. Maruyama. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 218 (1-4), 117 (2004). DOI: 10.1016/j.nimb.2003.12.001
  9. N. Kawasaki, N. Sugiyama, Y. Otsuka, H. Hashimoto, M. Tsujimoto, H. Kurata, S. Isoda. Ultramicroscopy, 108 (5), 399 (2008). DOI: 10.1016/j.ultramic.2007.05.012
  10. A. Gloter, V. Badjeck, L. Bocher, N. Brun, K. March, M. Marinova, M. Tence, M. Walls, A. Zobelli, O. Stephan, C. Colliex. Mater. Sci. Semicond. Process, 65, 2 (2017). DOI: 10.1016/j.mssp.2016.07.006
  11. H.L. Xin, C. Dwyer, D.A. Muller. Ultramicroscopy, 139, 38 (2014). DOI: 10.1016/j.ultramic.2014.01.006
  12. L.F. Valadares, F. Bragan ca, C. Silva, C.A. Leite, F. Galembeck. J. Colloid Interface Sci., 309 (1), 140 (2007). DOI: 10.1016/j.jcis.2006.12.059
  13. M.J. Mohn, J. Biskupek, Z. Lee, H. Rose, U. Kaiser. Ultramicroscopy, 219, 113119 (2020). DOI: 10.1016/j.ultramic.2020.113119
  14. K. Kimoto, Y. Matsui. Ultramicroscopy, 96 (3-4), 335 (2003). DOI: 10.1016/s0304-3991(03)00099-8
  15. M. Horak, T. v Sikola. Ultramicroscopy, 216, 113044 (2020). DOI: 10.1016/j.ultramic.2020.113044
  16. R.F. Egerton. Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer, NY., 2011), DOI: 10.1007/978-1-4419-9583-4
  17. S. Lu, K.J. Kormondy, A.A. Demkov, D.J. Smith. Ultramicroscopy, 195, 25 (2018). DOI: 10.1016/j.ultramic.2018.08.013
  18. M.M. Dementieva. Avtoref. kand. diss. (SRC "Kurchatov Institute", M., 2019) (in Russian)
  19. K.E. Prikhodko, M.M. Dementieva. ZHTF, 93 (7), 1054 (2023). DOI: 10.21883/JTF.2023.07.55.769.67-23 [K.E. Prikhodko, M.M. Dement'eva. Tech. Phys., 68 (7), 983 (2023).] DOI: 10.61011/TP.2023.07.56650.67-23]
  20. D.B. Williams, C.B. Carter. Transmission Electron Microscopy: A Textbook for Materials Science (Springer, NY., 2009)
  21. R.F. Egerton. Ultramicroscopy, 9 (4), 387 (1982). DOI: 10.1016/0304-3991(82)90101-2
  22. R.F. Egerton, M. Malac. Ultramicroscopy, 92 (2), 47 (2002). DOI: 10.1016/s0304-3991(01)00155-3
  23. K.L.Y. Fung, M.W. Fay, S.M. Collins, D.M. Kepaptsoglou, S.T. Skowron, Q.M. Ramasse, A.N. Khlobystov. Ultramicroscopy, 217, 113052 (2020). DOI: 10.1016/j.ultramic.2020.113052
  24. M.M. Disko, H. Shuman. Ultramicroscopy, 20 (1-2), 43 (1986). DOI: 10.1016/0304-3991(86)90167
  25. J. Verbeeck, S. Van Aert. Ultramicroscopy, 106 (11-12), 976 (2006). DOI: 10.1016/j.ultramic.2004.06.004
  26. R. Hovden, P. Cueva, J.A. Mundy, D.A. Muller. Microscopy Today, 21 (1), 40 (2013). DOI: 10.1017/S1551929512000995
  27. C.S. Graner d, W. Zhan, O. Prytz. Ultramicroscopy, 184, 39 (2018). DOI: 10.1016/j.ultramic.2017.08.006
  28. G. Dosovitskiy, V. Dubov, P. Karpyuk, P. Volkov, G. Tamulaitis, A. Borisevich, A. Vaitkeviv cius, K. Prikhodko, L. Kutuzov, R. Svetogorov, A. Veligzhanin, M. Korzhik. J. Luminescence, 236, 118140 (2021). DOI: 10.1016/j.jlumin.2021.118140
  29. K.E. Prikhodko, G.Yu. Golubev. Tech. Phys. Lett., 49 (9), 8 (2023). DOI: 10.61011/TPL.2023.09.56698.19621
  30. B.A. Gurovich, K.E. Prikhodko, L.V. Kutuzov, B.V. Goncharov, D.A. Komarov, E.M. Malieva. Phys. Solid State, 64 (10), 1373 (2022). DOI: 10.21883/PSS.2022.10.54221.47HH

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru