Passivation of CdHgTe surface using low-temperature plasma-enhanced atomic layer deposition of HfO2
Zakirov E. R.1, Sidorov G. Yu.1, Krasnova I. A.1, Golyashov V. A.1, Ponomarev S. A.1, Tereshchenko O. E.1, Marchishin I. V.1
1Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: erzakirov@isp.nsc.ru
Thin films of hafnium oxide formed by plasma-enhanced atomic layer deposition on the surface of mercury-cadmium telluride in the temperature range of 80-160oC were studied. To characterize the properties of the films and the insulator-semiconductor interface, the following techniques were used: X-ray photoelectron spectroscopy (XPS), electron energy loss spectroscopy (EELS), atomic force microscopy (AFM), spectral ellipsometry, and analysis of capacitance-voltage characteristics (C-V) of metal-insulator-semiconductor structures. The paper presents the dependences of the studied parameters on the insulator deposition temperature. Keywords: CdHgTe, HfO2, plasma-enhanced atomic layer deposition, surface passivation, metal-insulator-semiconductor.
- X. Wang, M. Wang, Y. Liao, H. Zhang, B. Zhang, T. Wen, J. Yi, L. Qiao, Sci. China Phys. Mech. Astron., 66 (3), 237302 (2023). DOI: 10.1007/s11433-022-2003-2
- I.D. Burlakov, N.A. Kulchitsky, A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, D.I. Gorn, J. Commun. Technol. Electron., 66 (9), 1084 (2021). DOI: 10.1134/S1064226921090035
- M. Kopytko, J. Sobieski, W. Gawron, P. Martyniuk, Sensors, 22 (3), 924 (2022). DOI: 10.3390/s22030924
- A.S. Kazakov, A.V. Galeeva, A.I. Artamkin, A.V. Ikonnikov, S.N. Chmyr, S.A. Dvoretskiy, N.N. Mikhailov, M.I. Bannikov, S.N. Danilov, L.I. Ryabova, D.R. Khokhlov, Bull. Russ. Acad. Sci. Phys., 87 (6), 739 (2023). DOI: 10.3103/S1062873823702118
- F. Sizov, M. Vuichyk, K. Svezhentsova, Z. Tsybrii, S. Stariy, M. Smolii, Mater. Sci. Semicond. Process., 124, 105577 (2021). DOI: 10.1016/j.mssp.2020.105577
- J. Chen, Y. Lin, L. Li, X. Wang, W. Dong, L. Liu, Z. Yuan, X. Cui, S. Yuan, J. Mater. Res. Technol., 28, 3175 (2024). DOI: 10.1016/j.jmrt.2023.12.185
- C. Ailiang, S. Changhong, W. Fang, Y. Zhenhua, Infrared Phys. Technol., 114, 103667 (2021). DOI: 10.1016/j.infrared.2021.103667
- V.S. Meena, M.S. Mehata, Thin Solid Films, 731, 138751 (2021). DOI: 10.1016/j.tsf.2021.138751
- H.N. Abbasi, X. Qi, J. Gong, Z. Ju, S. Min, Y.-H. Zhang, Z. Ma, J. Appl. Phys., 134 (13), 135304 (2023). DOI: 10.1063/5.0161858
- I.I. Izhnin, I.I. Syvorotka, A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, S.A. Dvoretsky, N.N. Mikhailov, Appl. Nanosci., 10 (8), 2486 (2019). DOI: 10.1007/s13204-019-01081-7
- D.V. Gorshkov, E.R. Zakirov, G.Yu. Sidorov, I.V. Sabinina, D.V. Marin, D.G. Ikusov, M.V. Yakushev, V.A. Golyashov, O.E. Tereshchenko, Appl. Phys. Lett., 121 (8), 081602 (2022). DOI: 10.1063/5.0096133
- D. Barreca, A. Milanov, R.A. Fischer, A. Devi, E. Tondello, Surf. Sci. Spectra, 14 (1), 34 (2021). DOI: 10.1116/11.20080401
- K.M. Kim, J.S. Jang, S.G. Yoon, J.Y. Yun, N.K. Chung, Materials, 13 (9), 2008 (2020). DOI: 10.3390/ma13092008
- J. Park, S. Heo, J.-G. Chung, H. Kim, H. Lee, K. Kim, G.-S. Park, Ultramicroscopy, 109 (9), 1183 (2009). DOI: 10.1016/j.ultramic.2009.04.005
- A.G. Shard, J. Vac. Sci. Technol. A, 38 (4), 041201 (2020). DOI: 10.1116/1.5141395
- V.G. Kesler, E.R. Zakirov, in 2014 15th Int. Conf. of young specialists on micro/nanotechnologies and electron devices (EDM) (IEEE, 2014), p. 33--35. DOI: 10.1109/EDM.2014.6882470
- R. Winter, J. Ahn, P.C. McIntyre, M. Eizenberg, J. Vac. Sci. Technol. B, 31 (3), 030604 (2013). DOI: 10.1116/1.4802478
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.