Developed Ag nanostructures on c-Si as surface-enhanced Raman scattering substrates for detection of triphenylmethane dye
K.V. Prigoda1, A.A. Ermina1, V.O. Bolshakov1, V.S. Levitskii2, N.A. Belskaya1, D.P. Markov1, Yu.A. Zharova1
1Ioffe Institute, St. Petersburg, Russia
2R&D Center of Thin Film Technologies in Energetics under the Ioffe Institute LLC, St. Petersburg, Russia
Email: piliouguina@mail.ioffe.ru
Dendritic silver nanostructures on silicon as surface-enhanced Raman scattering substrates are considered in this work. The structures were obtained by chemical reduction of AgNO3 on the silicon surface with different metal deposition time. Positions of "hot spots" of the structures under study was determined qualitatively by means of simulation in COMSOL Multiphysics, and enhancement factors from the structures were calculated ~107. The surface-enhanced Raman spectroscopy has shown reliable detection of aqueous solution of brilliant green dye on the prepared substrates. Limit of detection of the dye was 10-12 M. Using the experimental data, we have determined the enhancement factors reaching 108 for the least developed structure and 107 for more developed structures. Keywords: surface-enhanced Raman scattering, Ag nanodendrites, silicon, hot spots, brilliant green.
- R. Kant. Natural Science, 4 (1), 22 (2012). DOI: 10.4236/ns.2012.41004
- A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem. RSC Adv., 4 (70), 37003 (2014). DOI: 10.1039/C4RA06658H
- K. Hunger. In: Industrial Dyes: Chemistry, Properties, Applications, ed. by K. Hunger (Wiley Online Books, 2002), DOI: 10.1002/3527602011.ch1
- A.V. Sorokin, A.A. Komarov. Veterinariya, 9, 1 (55). (in Russian) DOI: 10.30896/0042-4846.2020.23.1.54-60
- S.R. Couto. Biotechnol. Adv., 27 (3), 227 (2009). DOI: 10.1016/j.biotechadv.2008.12.001
- B.K. Nandi, A. Goswami, M.K. Purkait. J. Hazard. Mater., 161 (1), 387 (2009). DOI: 10.1016/j.jhazmat.2008.03.110
- A. Mittal, D. Kaur, J. Mittal. J. Colloid Interface Sci., 326 (1), 8 (2008). DOI: 10.1016/j.jcis.2008.07.005
- T. Gessner, U. Mayer. In: Ullmann's Encyclopedia of Industrial Chemistry, ed. by Claudia Ley (Wiley-VCH, 2000), DOI: 10.1002/14356007.a27_179
- J. Liu, Q. Zhao, W. Cao, H. Zhao, J. Cheng, B. Li, X. Yang. Microchem. J., 158, 105275 (2020). DOI: 10.1016/j.microc.2020.105275
- N. Lopez-Gutierrez, R. Romero-Gonzalez, V.J.L. Marti nez, A.G. Frenich. Anal. Methods, 5 (14), 3434 (2013). DOI: 10.1039/C3AY40485D
- W.C. Andersen, S.B. Turnipseed, C.M. Karbiwnyk, R.H. Lee, S.B. Clark, W.D. Rowe, M.R. Madson, K.E. Miller. Anal. Chim. Acta, 637 (1-2), 279 (2009). DOI: 10.1016/j.aca.2008.09.041
- W. Przystas, E. Zab ocka-Godlewska, E. Grabinska-Sota. Water Air Soil Pollut., 223, 1581 (2012). DOI: 10.1007/s11270-011-0966-7
- W. Przystas, E. Zab ocka-Godlewska, E. Grabinska-Sota. Water Air Soil Pollut., 224, 1534 (2013). DOI: 10.1007/s11270-013-1534-0
- Y.-Q. Liu, N. Maulidiany, P. Zeng, S. Heo. Chemosphere, 263, 128312 (2021). DOI: 10.1016/j.chemosphere.2020.128312
- X. Lu, C. Qiman, N. Xinkai, Z. Yilin, C. Yu'e, H. Qing, L. Miaoqing, W. Shuang, L. Jihong. Molecules, 28 (14), 5401 (2023). DOI: 10.3390/molecules28145401
- H. Yi, W. Qu, W. Huang. Microchim. Acta, 160, 291 (2008). DOI: 10.1007/s00604-007-0814-z
- Y. Zhou, X. Li, Z. Pan, B. Ye, M. Xu. Food Anal. Methods, 12, 1246 (2019). DOI: 10.1007/s12161-019-01459-x
- G. Singh, T. Koerner, J.-M. Gelinas, M. Abbott, B. Brady, A.-C. Huet, C. Charlier, P. Delahaut, S.B. Godefroy. Food Addit. Contam. Part A, 28 (6), 731 (2011). DOI: 10.1080/19440049.2011.567360
- K. Mitrowska, A. Posyniak, J. Zmudzki. J. Chromatogr. A, 1089 (1-2), 187 (2005). DOI: 10.1016/j.chroma.2005.07.004
- M. Tang, L. Qin, M. Luo, H. Shen, S.-Z. Kang, T. Zhang, X. Li. J. Environ. Chem. Eng., 10 (3), 108040 (2022). DOI: 10.1016/j.jece.2022.108040
- A.A. Ermina, N.S. Solodovchenko, V.S. Levitskii, N.A. Belskaya, S.I. Pavlov, V.O. Bolshakov, V.A. Tolmachev, Yu.A. Zharova. Mater. Sci. Semicond. Process., 169, 107861 (2024). DOI: 10.1016/j.mssp.2023.107861
- J. Jiang, Q. Shen, P. Xue, H. Qi, Y. Wu, Y. Teng, Y. Zhang, Y. Liu, X. Zhao, X. Liu. ChemistrySelect, 5 (1), 354 (2020). DOI: 10.1002/slct.201903924
- J. Langer, D.J. de Aberasturi, J. Aizpurua, R.A. Alvarez-Puebla, B. Auguie, J.J. Baumberg, G.C. Bazan, S.E.J. Bell, A. Boisen, A.G. Brolo, J. Choo, Dana Cialla-May, V. Deckert, L. Fabris, K. Faulds, F.J. Garci a de Abajo, R. Goodacre, D. Graham, A.J. Haes, Ch.L. Haynes, Ch. Huck, T. Itoh, M. Kall, J. Kneipp, N.A. Kotov, H. Kuang, E.C. Le Ru, H.K. Lee, J.-F. Li, X. Yi Ling, S.A. Maier, Th. Mayerhofer, M. Moskovits, K. Murakoshi, J.-M. Nam, Sh. Nie, Y. Ozaki, I. Pastoriza-Santos, J. Perez-Juste, J. Popp, A. Pucci, S. Reich, B. Ren, G.C. Schatz, T. Shegai, S. Schlucker, L.-L. Tay, K.G. Thomas, Zh.-Q. Tian, R.P. Van Duyne, T. Vo-Dinh, Y. Wang, K.A. Willets, Ch. Xu, H. Xu, Y. Xu, Y.S. Yamamoto, B. Zhao, L.M. Liz-Marzan. ACS Nano, 14 (1), 28 (2020). DOI: 10.1021/acsnano.9b04224
- X. Zheng, Z. Ye, Z. Akmal, C. He, J. Zhang, L. Wang. Chem. Soc. Rev., 53 (2), 656 (2024). DOI: 10.1039/D3CS00462G
- R. Peng, T. Zhang, S. Yan, Y. Song, X. Liu, J. Wang. Nanomaterials, 13 (22), 2968 (2023). DOI: 10.3390/nano13222968
- W. Li, X. Zhao, Z. Yi, A.M. Glushenkov, L. Kong. Anal. Chim. Acta, 984, 19 (2017). DOI: 10.1016/j.aca.2017.06.002
- K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld. Phys. Rev. Lett., 78 (9), 1667 (1997). DOI: 10.1103/PhysRevLett.78.1667
- L. Long, W. Ju, H.-Y. Yang, Z. Li. ACS Mater. Au, 2 (5), 552 (2022). DOI: 10.1021/acsmaterialsau.2c00005
- M.S. Goh, Y.H. Lee, S. Pedireddy, I.Y. Phang, W.W. Tjiu, J.M.R. Tan, X.Y. Ling. Langmuir, 28 (40), 14441 (2012). DOI: 10.1021/la302795
- Z. Zhang, J. Wang, K.B. Shanmugasundaram, B. Yeo, A. Moller, A. Wuethrich, L.L. Lin, M. Trau. Small, 16 (13), 1905614 (2020). DOI: 10.1002/smll.201905614
- K. Prigoda, A. Ermina, V. Bolshakov, A. Tabarov, V. Levitskii, O. Andreeva, A. Gazizulin, S. Pavlov, D. Danilenko, V. Vitkin, Yu. Zharova. Opt. Mater., 149, 114977 (2024). DOI: 10.1016/j.optmat.2024.114977
- A. Tabarov, V. Vitkin, O. Andreeva, A. Shemanaeva, E. Popov, A. Dobroslavin, V. Kurikova, O. Kuznetsova, K. Grigorenko, I. Tzibizov, A. Kovalev, V. Savchenko, A. Zheltuhina, A. Gorshkov, D. Danilenko. Biosensors, 12 (12), 1065 (2022). DOI: 10.3390/bios12121065
- S. Aitekenov, A. Sultangaziyev, A. Boranova, A. Dyussupova, A. Ilyas, A. Gaipov, R. Bukasov. Sensors, 23 (3), 1605 (2023). DOI: 10.3390/s23031605
- T. Liyanage, A. Rael, S. Shaffer, S. Zaidi, J.V. Goodpaster, R. Sardar. Analyst, 143 (9), 2012 (2018). DOI: 10.1039/C8AN00008E
- J.B.M. Parambath, G. Kim, C. Han A.A. Mohamed. Res. Chem. Intermed., 49, 1259 (2023). DOI: 10.1007/s11164-022-04913-4
- H. Sun, X. Li, Z. Hu, C. Gu, D. Chen, J. Wang, B. Li, T. Jiang, X. Zhou. Appl. Surf. Sci., 556, 149748 (2021). DOI: 10.1016/j.apsusc.2021.149748
- X. He, X. Zhou, Y. Liu, X. Wang. Sens. Actuators B Chem., 311, 127676 (2020). DOI: 10.1016/j.snb.2020.127676
- I.B. Ansah, S.H. Lee, C. Mun, J.-Y. Yang, J. Park, S.-Y. Nam, S. Lee, D.-H. Kim, S.-G. Park. Sens. Actuators B Chem., 379, 133172 (2023). DOI: 10.1016/j.snb.2022.133172
- M.K. Pham, D.T.N. Nga, Q.D. Mai, V.M. Tien, N.Q. Hoa, V.D. Lam, H.A. Nguyen, A.-T. Le. Anal. Methods, 15 (39), 5239 (2023). DOI: 10.1039/D3AY01374J
- A.A. Ermina, N.S. Solodovchenko, K.V. Prigoda, V.S. Levitskii, V.O. Bolshakov, M.Yu. Maximov, Yu.M. Koshtyal, S.I. Pavlov, V.A. Tolmachev, Yu.A. Zharova. Appl. Surf. Sci., 608, 155146 (2023). DOI: 10.1016/j.apsusc.2022.155146
- X. Wang, X. Zhu, Y. Chen, M. Zheng, Q. Xiang, Z. Tang, G. Zhang, H. Duan. ACS Appl. Mater. Interfaces, 9 (36), 31102 (2017). DOI: 10.1021/acsami.7b08818
- J. Chen, Y. Huang, P. Kannan, L. Zhang, Z. Lin, J. Zhang, T. Chen, L. Guo. Anal. Chem., 88 (4), 2149 (2016). DOI: 10.1021/acs.analchem.5b03735
- Z. Deng, X. Chen, Y. Wang, E. Fang, Z. Zhang, X. Chen. Anal. Chem., 87 (1), 633 (2015). DOI: 10.1021/ac503341g
- A. Milewska, V. Zivanovic, V. Merk, U.B. Arnalds, O.E. Sigurjonsson, J. Kneipp, K. Leosson. Biomed. Opt. Express, 10, 6172 (2019). DOI: 10.1364/BOE.10.006172
- K. Prigoda, A. Ermina, V. Bolshakov, D. Nazarov, I. Ezhov, O. Lutakov, M. Maximov, V. Tolmachev, Y. Zharova. Coatings, 12 (11), 1748 (2022). DOI: 10.3390/coatings12111748
- D.A. Nazarovskaia, P.A. Domnin, O.D. Gyuppenen, I.I. Tsiniaikin, S.A. Ermolaeva, K.A. Gonchar, L.A. Osminkina. Bull. Russ. Acad. Sci. Phys., 87 (1), 41 (2023). DOI: 10.1134/S1062873823704385
- A.A. Ermina, N.S. Solodovchenko, K.V. Prigoda, V.S. Levitskii, S.I. Pavlov, Yu.A. Zharova. Semicond, 57 (4), 241 (2023). DOI: 10.61011/SC.2023.04.56420.07k
- Y. Lu, C.-Y. Zhang, D.-J. Zhang, R. Hao, Y.-W. Hao, Y.-Q. Liu. Chin. Chem. Lett., 27 (5), 689 (2016). DOI: 10.1016/j.cclet.2016.01.032
- A. Khorshidi, N. Mardazad. Res. Chem. Intermed., 42, 7551 (2016). DOI: 10.1007/s11164-016-2552-5
- L.A. Osminkina, O. vZukovskaja, S.N. Agafilushkina, E. Kaniukov, O. Stranik, K.A. Gonchar, D. Yakimchuk, V. Bundyukova, D.A. Chermoshentsev, S.A. Dyakov, N.A. Gippius, K. Weber, J. Popp, D. Cialla-May, V. Sivakov. Appl. Surf. Sci., 507, 144989 (2020). DOI: 10.1016/j.apsusc.2019.144989
- D. Ge, J. Wei, J. Ding, J. Zhang, C. Ma, M. Wang, L. Zhang, S. Zhu. ACS Appl. Nano Mater., 3 (3), 3011 (2020). DOI: 10.1021/acsanm.0c00296
- S.A. Razek, A.B. Ayoub, M.A. Swillam. Sci. Rep., 9, 13588 (2019). DOI: 10.1038/s41598-019-49896-2
- Z.-Y. Li. Adv. Opt. Mater., 6 (16), 1701097 (2018). DOI: 10.1002/adom.201701097
- T.C. Dao, T.Q.N. Luong, T.A. Cao, M.K. Ngoc. Comm. Phys., 32 (2), 201 (2022). DOI: 10.15625/0868-3166/16113
- C. Bi, Y. Song, H. Zhao, G. Liu. RSC Adv., 12 (30), 19571 (2022). DOI: 10.1039/D2RA02651A
- A.M. Schwartzberg, C.D. Grant, A. Wolcott, C.E. Talley, T.R. Huser, R. Bogomolni, J.Z. Zhang. J. Phys. Chem. B, 108 (50), 19191 (2004). DOI: 10.1021/jp048430p
- Y. Zharova, A. Ermina, S. Pavlov, Y. Koshtyal, V. Tolmachev. Phys. Status Solidi A, 216 (17), 1900318 (2019). DOI: 10.1002/pssa.201900318
- V.A. Tolmachev, E.V. Gushchina, I.A. Nyapshaev, Yu.A. Zharova. Thin Solid Films, 756, 139352 (2022). DOI: 10.1016/j.tsf.2022.139352
- V.A. Tolmachev, Yu.A. Zharova, A.A. Ermina, V.O. Bolshakov. Opt. Spectr., 130 (2), 238 (2022). DOI: 10.21883/EOS.2022.02.53215.2668-21
- T.C. Dao, T.Q.N. Luong, T.A. Cao, M.K. Ngoc., V.L. Van. Adv. Nat. Sci: Nanosci. Nanotechnol., 7 (1), 015007 (2016). DOI: 10.1088/2043-6262/7/1/015007
- V.S. Vendamani, S.V.S. Nageswara Rao, A.P. Pathak, V.R. Soma. RSC Adv., 10 (73), 44747 (2020). DOI: 10.1039/D0RA08834J
- M.V. Mandke, S.-H. Han, H.M. Pathan. Cryst. Eng. Comm., 14 (1), 86 (2012). DOI: 10.1039/c1ce05791j
- W. Ye, C. Shen, J. Tian, C. Wang, C. Hui, H. Gao. Solid State Sci., 11 (6), 1088 (2009). DOI: 10.1016/j.solidstatesciences.2009.03.001
- T.C. Dao, T.Q.N. Luong, Q.N. Truc. RSC Adv., 10 (67), 40940 (2020). DOI: 10.1039/d0ra08060h
- T.A. Witten, L.M. Sander. Phys. Rev. Lett., 47 (19), 1400 (1981). DOI: 10.1103/PhysRevLett.47.1400
- Z. Yang, W.W. Tjiu, W. Fan, T. Liu. Electrochim. Acta, 90, 400 (2013). DOI: 10.1016/j.electacta.2012.12.038
- X. Qin, H. Wang, X. Wang, Z. Miao, Y. Fang, Q. Chen, X. Shao. Electrochim. Acta, 56 (9), 3170 (2011). DOI: 10.1016/j.electacta.2011.01.058
- R.W.G. Wyckoff. Crystal Structures (Interscience publishers, NY., 1963)
- K. Uchinokura, T. Sekine, E. Matsuura. Solid State Commun., 11 (1), 47 (1972). DOI: 10.1016/0038-1098(72)91127-1
- J. Chowdhury, M. Ghosh. J. Colloid Interface Sci., 277 (1), 121 (2004). DOI: 10.1016/j.jcis.2004.04.030
- Y. Wang, D. Li, P. Li, W. Wang, W. Ren, S. Dong, E. Wang. J. Phys. Chem. C, 111 (45), 16833 (2007). DOI: 10.1021/jp074519u
- P. Simakova, E. Kocivsova, M. Prochazka. J. Nanomater., 2021, 4009352 (2021). DOI: 10.1155/2021/4009352
- E.C. Le Ru, E.J. Blackie, M. Meyer, P.G. Etchegoin. J. Phys. Chem. C, 111 (37), 13794 (2007). DOI: 10.1021/jp0687908
- P. Hildebrandt, M. Stockburger. J. Phys. Chem., 88 (24), 5935 (1984). DOI: 10.1021/j150668a038
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.