Вышедшие номера
Развитые Ag наноструктуры на c-Si в качестве подложек с гигантским комбинационным рассеянием для детектирования трифенилметанового красителя
Пригода К.В.1, Ермина А.А.1, Большаков В.О.1, Левицкий В.С.2, Бельская Н.А.1, Марков Д.П.1, Жарова Ю.А.1
1Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
2НТЦ тонкопленочных технологий в энергетике, Санкт-Петербург, Россия
Email: piliouguina@mail.ioffe.ru
Поступила в редакцию: 23 апреля 2024 г.
В окончательной редакции: 23 апреля 2024 г.
Принята к печати: 23 апреля 2024 г.
Выставление онлайн: 1 июля 2024 г.

Рассмотрены дендритные наноструктуры серебра на кремнии в качестве подложек с гигантским комбинационным рассеянием света. Структуры получены методом химического восстановления AgNO3 на поверхности кремния с разным временем осаждения металла. Качественно определено положение "горячих точек" исследуемых структур с помощью моделирования в программе COMSOL Multiphysics, а также рассчитаны коэффициенты усиления от структур ~107. Спектроскопия гигантского комбинационного рассеяния света показала надежное детектирование на изготовленных подложках водного раствора красителя бриллиантового зеленого, предел обнаружения которого составил 10-12 M. Используя экспериментальные данные, были определены коэффициенты усиления для полученных образцов, достигающие значения 108 для наименее развитой структуры и 107 для более развитых. Ключевые слова: гигантское комбинационное рассеяние, нанодендриты Ag, кремний, горячие точки, бриллиантовый зеленый.
  1. R. Kant. Natural Science, 4 (1), 22 (2012). DOI: 10.4236/ns.2012.41004
  2. A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem. RSC Adv., 4 (70), 37003 (2014). DOI: 10.1039/C4RA06658H
  3. K. Hunger. In: Industrial Dyes: Chemistry, Properties, Applications, ed. by K. Hunger (Wiley Online Books, 2002), DOI: 10.1002/3527602011.ch1
  4. А.В. Сорокин, А.А. Комаров. Ветеринария, 1, 55 (2020). DOI: 10.30896/0042-4846.2020.23.1.54-60
  5. S.R. Couto. Biotechnol. Adv., 27 (3), 227 (2009). DOI: 10.1016/j.biotechadv.2008.12.001
  6. B.K. Nandi, A. Goswami, M.K. Purkait. J. Hazard. Mater., 161 (1), 387 (2009). DOI: 10.1016/j.jhazmat.2008.03.110
  7. A. Mittal, D. Kaur, J. Mittal. J. Colloid Interface Sci., 326 (1), 8 (2008). DOI: 10.1016/j.jcis.2008.07.005
  8. T. Gessner, U. Mayer. In: Ullmann's Encyclopedia of Industrial Chemistry, ed. by Claudia Ley (Wiley-VCH, 2000), DOI: 10.1002/14356007.a27_179
  9. J. Liu, Q. Zhao, W. Cao, H. Zhao, J. Cheng, B. Li, X. Yang. Microchem. J., 158, 105275 (2020). DOI: 10.1016/j.microc.2020.105275
  10. N. Lopez-Gutierrez, R. Romero-Gonzalez, V.J.L. Marti nez, A.G. Frenich. Anal. Methods, 5 (14), 3434 (2013). DOI: 10.1039/C3AY40485D
  11. W.C. Andersen, S.B. Turnipseed, C.M. Karbiwnyk, R.H. Lee, S.B. Clark, W.D. Rowe, M.R. Madson, K.E. Miller. Anal. Chim. Acta, 637 (1-2), 279 (2009). DOI: 10.1016/j.aca.2008.09.041
  12. W. Przystas, E. Zab ocka-Godlewska, E. Grabinska-Sota. Water Air Soil Pollut., 223, 1581 (2012). DOI: 10.1007/s11270-011-0966-7
  13. W. Przystas, E. Zab ocka-Godlewska, E. Grabinska-Sota. Water Air Soil Pollut., 224, 1534 (2013). DOI: 10.1007/s11270-013-1534-0
  14. Y.-Q. Liu, N. Maulidiany, P. Zeng, S. Heo. Chemosphere, 263, 128312 (2021). DOI: 10.1016/j.chemosphere.2020.128312
  15. X. Lu, C. Qiman, N. Xinkai, Z. Yilin, C. Yu'e, H. Qing, L. Miaoqing, W. Shuang, L. Jihong. Molecules, 28 (14), 5401 (2023). DOI: 10.3390/molecules28145401
  16. H. Yi, W. Qu, W. Huang. Microchim. Acta, 160, 291 (2008). DOI: 10.1007/s00604-007-0814-z
  17. Y. Zhou, X. Li, Z. Pan, B. Ye, M. Xu. Food Anal. Methods, 12, 1246 (2019). DOI: 10.1007/s12161-019-01459-x
  18. G. Singh, T. Koerner, J.-M. Gelinas, M. Abbott, B. Brady, A.-C. Huet, C. Charlier, P. Delahaut, S.B. Godefroy. Food Addit. Contam. Part A, 28 (6), 731 (2011). DOI: 10.1080/19440049.2011.567360
  19. K. Mitrowska, A. Posyniak, J. Zmudzki. J. Chromatogr. A, 1089 (1-2), 187 (2005). DOI: 10.1016/j.chroma.2005.07.004
  20. M. Tang, L. Qin, M. Luo, H. Shen, S.-Z. Kang, T. Zhang, X. Li. J. Environ. Chem. Eng., 10 (3), 108040 (2022). DOI: 10.1016/j.jece.2022.108040
  21. A.A. Ermina, N.S. Solodovchenko, V.S. Levitskii, N.A. Belskaya, S.I. Pavlov, V.O. Bolshakov, V.A. Tolmachev, Yu.A. Zharova. Mater. Sci. Semicond. Process., 169, 107861 (2024). DOI: 10.1016/j.mssp.2023.107861
  22. J. Jiang, Q. Shen, P. Xue, H. Qi, Y. Wu, Y. Teng, Y. Zhang, Y. Liu, X. Zhao, X. Liu. ChemistrySelect, 5 (1), 354 (2020). DOI: 10.1002/slct.201903924
  23. J. Langer, D.J. de Aberasturi, J. Aizpurua, R.A. Alvarez-Puebla, B. Auguie, J.J. Baumberg, G.C. Bazan, S.E.J. Bell, A. Boisen, A.G. Brolo, J. Choo, Dana Cialla-May, V. Deckert, L. Fabris, K. Faulds, F.J. Garci a de Abajo, R. Goodacre, D. Graham, A.J. Haes, Ch.L. Haynes, Ch. Huck, T. Itoh, M. Kall, J. Kneipp, N.A. Kotov, H. Kuang, E.C. Le Ru, H.K. Lee, J.-F. Li, X. Yi Ling, S.A. Maier, Th. Mayerhofer, M. Moskovits, K. Murakoshi, J.-M. Nam, Sh. Nie, Y. Ozaki, I. Pastoriza-Santos, J. Perez-Juste, J. Popp, A. Pucci, S. Reich, B. Ren, G.C. Schatz, T. Shegai, S. Schlucker, L.-L. Tay, K.G. Thomas, Zh.-Q. Tian, R.P. Van Duyne, T. Vo-Dinh, Y. Wang, K.A. Willets, Ch. Xu, H. Xu, Y. Xu, Y.S. Yamamoto, B. Zhao, L.M. Liz-Marzan. ACS Nano, 14 (1), 28 (2020). DOI: 10.1021/acsnano.9b04224
  24. X. Zheng, Z. Ye, Z. Akmal, C. He, J. Zhang, L. Wang. Chem. Soc. Rev., 53 (2), 656 (2024). DOI: 10.1039/D3CS00462G
  25. R. Peng, T. Zhang, S. Yan, Y. Song, X. Liu, J. Wang. Nanomaterials, 13 (22), 2968 (2023). DOI: 10.3390/nano13222968
  26. W. Li, X. Zhao, Z. Yi, A.M. Glushenkov, L. Kong. Anal. Chim. Acta, 984, 19 (2017). DOI: 10.1016/j.aca.2017.06.002
  27. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld. Phys. Rev. Lett., 78 (9), 1667 (1997). DOI: 10.1103/PhysRevLett.78.1667
  28. L. Long, W. Ju, H.-Y. Yang, Z. Li. ACS Mater. Au, 2 (5), 552 (2022). DOI: 10.1021/acsmaterialsau.2c00005
  29. M.S. Goh, Y.H. Lee, S. Pedireddy, I.Y. Phang, W.W. Tjiu, J.M.R. Tan, X.Y. Ling. Langmuir, 28 (40), 14441 (2012). DOI: 10.1021/la302795
  30. Z. Zhang, J. Wang, K.B. Shanmugasundaram, B. Yeo, A. Moller, A. Wuethrich, L.L. Lin, M. Trau. Small, 16 (13), 1905614 (2020). DOI: 10.1002/smll.201905614
  31. K. Prigoda, A. Ermina, V. Bolshakov, A. Tabarov, V. Levitskii, O. Andreeva, A. Gazizulin, S. Pavlov, D. Danilenko, V. Vitkin, Yu. Zharova. Opt. Mater., 149, 114977 (2024). DOI: 10.1016/j.optmat.2024.114977
  32. A. Tabarov, V. Vitkin, O. Andreeva, A. Shemanaeva, E. Popov, A. Dobroslavin, V. Kurikova, O. Kuznetsova, K. Grigorenko, I. Tzibizov, A. Kovalev, V. Savchenko, A. Zheltuhina, A. Gorshkov, D. Danilenko. Biosensors, 12 (12), 1065 (2022). DOI: 10.3390/bios12121065
  33. S. Aitekenov, A. Sultangaziyev, A. Boranova, A. Dyussupova, A. Ilyas, A. Gaipov, R. Bukasov. Sensors, 23 (3), 1605 (2023). DOI: 10.3390/s23031605
  34. T. Liyanage, A. Rael, S. Shaffer, S. Zaidi, J.V. Goodpaster, R. Sardar. Analyst, 143 (9), 2012 (2018). DOI: 10.1039/C8AN00008E
  35. J.B.M. Parambath, G. Kim, C. Han A.A. Mohamed. Res. Chem. Intermed., 49, 1259 (2023). DOI: 10.1007/s11164-022-04913-4
  36. H. Sun, X. Li, Z. Hu, C. Gu, D. Chen, J. Wang, B. Li, T. Jiang, X. Zhou. Appl. Surf. Sci., 556, 149748 (2021). DOI: 10.1016/j.apsusc.2021.149748
  37. X. He, X. Zhou, Y. Liu, X. Wang. Sens. Actuators B Chem., 311, 127676 (2020). DOI: 10.1016/j.snb.2020.127676
  38. I.B. Ansah, S.H. Lee, C. Mun, J.-Y. Yang, J. Park, S.-Y. Nam, S. Lee, D.-H. Kim, S.-G. Park. Sens. Actuators B Chem., 379, 133172 (2023). DOI: 10.1016/j.snb.2022.133172
  39. M.K. Pham, D.T.N. Nga, Q.D. Mai, V.M. Tien, N.Q. Hoa, V.D. Lam, H.A. Nguyen, A.-T. Le. Anal. Methods, 15 (39), 5239 (2023). DOI: 10.1039/D3AY01374J
  40. A.A. Ermina, N.S. Solodovchenko, K.V. Prigoda, V.S. Levitskii, V.O. Bolshakov, M.Yu. Maximov, Yu.M. Koshtyal, S.I. Pavlov, V.A. Tolmachev, Yu.A. Zharova. Appl. Surf. Sci., 608, 155146 (2023). DOI: 10.1016/j.apsusc.2022.155146
  41. X. Wang, X. Zhu, Y. Chen, M. Zheng, Q. Xiang, Z. Tang, G. Zhang, H. Duan. ACS Appl. Mater. Interfaces, 9 (36), 31102 (2017). DOI: 10.1021/acsami.7b08818
  42. J. Chen, Y. Huang, P. Kannan, L. Zhang, Z. Lin, J. Zhang, T. Chen, L. Guo. Anal. Chem., 88 (4), 2149 (2016). DOI: 10.1021/acs.analchem.5b03735
  43. Z. Deng, X. Chen, Y. Wang, E. Fang, Z. Zhang, X. Chen. Anal. Chem., 87 (1), 633 (2015). DOI: 10.1021/ac503341g
  44. A. Milewska, V. Zivanovic, V. Merk, U.B. Arnalds, O.E. Sigurjonsson, J. Kneipp, K. Leosson. Biomed. Opt. Express, 10, 6172 (2019). DOI: 10.1364/BOE.10.006172
  45. K. Prigoda, A. Ermina, V. Bolshakov, D. Nazarov, I. Ezhov, O. Lutakov, M. Maximov, V. Tolmachev, Y. Zharova. Coatings, 12 (11), 1748 (2022). DOI: 10.3390/coatings12111748
  46. D.A. Nazarovskaia, P.A. Domnin, O.D. Gyuppenen, I.I. Tsiniaikin, S.A. Ermolaeva, K.A. Gonchar, L.A. Osminkina. Bull. Russ. Acad. Sci. Phys., 87 (1), 41 (2023). DOI: 10.1134/S1062873823704385
  47. А.А. Ермина, Н.С. Солодовченко, К.В. Пригода, В.С. Левицкий, С.И. Павлов, Ю.А. Жарова. ФТП, 57 (4), 243 (2023). DOI: 10.21883/FTP.2023.04.55893.07k [A.A. Ermina, N.S. Solodovchenko, K.V. Prigoda, V.S. Levitskii, S.I. Pavlov, Yu.A. Zharova. Semicond, 57 (4), 241 (2023). DOI: 10.61011/SC.2023.04.56420.07k
  48. Y. Lu, C.-Y. Zhang, D.-J. Zhang, R. Hao, Y.-W. Hao, Y.-Q. Liu. Chin. Chem. Lett., 27 (5), 689 (2016). DOI: 10.1016/j.cclet.2016.01.032
  49. A. Khorshidi, N. Mardazad. Res. Chem. Intermed., 42, 7551 (2016). DOI: 10.1007/s11164-016-2552-5
  50. L.A. Osminkina, O. vZukovskaja, S.N. Agafilushkina, E. Kaniukov, O. Stranik, K.A. Gonchar, D. Yakimchuk, V. Bundyukova, D.A. Chermoshentsev, S.A. Dyakov, N.A. Gippius, K. Weber, J. Popp, D. Cialla-May, V. Sivakov. Appl. Surf. Sci., 507, 144989 (2020). DOI: 10.1016/j.apsusc.2019.144989
  51. D. Ge, J. Wei, J. Ding, J. Zhang, C. Ma, M. Wang, L. Zhang, S. Zhu. ACS Appl. Nano Mater., 3 (3), 3011 (2020). DOI: 10.1021/acsanm.0c00296
  52. S.A. Razek, A.B. Ayoub, M.A. Swillam. Sci. Rep., 9, 13588 (2019). DOI: 10.1038/s41598-019-49896-2
  53. Z.-Y. Li. Adv. Opt. Mater., 6 (16), 1701097 (2018). DOI: 10.1002/adom.201701097
  54. T.C. Dao, T.Q.N. Luong, T.A. Cao, M.K. Ngoc. Comm. Phys., 32 (2), 201 (2022). DOI: 10.15625/0868-3166/16113
  55. С. Bi, Y. Song, H. Zhao, G. Liu. RSC Adv., 12 (30), 19571 (2022). DOI: 10.1039/D2RA02651A
  56. A.M. Schwartzberg, C.D. Grant, A. Wolcott, C.E. Talley, T.R. Huser, R. Bogomolni, J.Z. Zhang. J. Phys. Chem. B, 108 (50), 19191 (2004). DOI: 10.1021/jp048430p
  57. Y. Zharova, A. Ermina, S. Pavlov, Y. Koshtyal, V. Tolmachev. Phys. Status Solidi A, 216 (17), 1900318 (2019). DOI: 10.1002/pssa.201900318
  58. V.A. Tolmachev, E.V. Gushchina, I.A. Nyapshaev, Yu.A. Zharova. Thin Solid Films, 756, 139352 (2022). DOI: 10.1016/j.tsf.2022.139352
  59. В.А. Толмачев, Ю.А. Жарова, А.А. Ермина, В.О. Большаков. Опт. и спектр., 130 (2), 243 (2022). DOI: 10.21883/OS.2022.02.51992.2668-21 [V.A. Tolmachev, Yu.A. Zharova, A.A. Ermina, V.O. Bolshakov. Opt. Spectr., 130 (2), 238 (2022). DOI: 10.21883/EOS.2022.02.53215.2668-21]
  60. T.C. Dao, T.Q.N. Luong, T.A. Cao, M.K. Ngoc., V.L. Van. Adv. Nat. Sci: Nanosci. Nanotechnol., 7 (1), 015007 (2016). DOI: 10.1088/2043-6262/7/1/015007
  61. V.S. Vendamani, S.V.S. Nageswara Rao, A.P. Pathak, V.R. Soma. RSC Adv., 10 (73), 44747 (2020). DOI: 10.1039/D0RA08834J
  62. M.V. Mandke, S.-H. Han, H.M. Pathan. Cryst. Eng. Comm., 14 (1), 86 (2012). DOI: 10.1039/c1ce05791j
  63. W. Ye, C. Shen, J. Tian, C. Wang, C. Hui, H. Gao. Solid State Sci., 11 (6), 1088 (2009). DOI: 10.1016/j.solidstatesciences.2009.03.001
  64. T.C. Dao, T.Q.N. Luong, Q.N. Truc. RSC Adv., 10 (67), 40940 (2020). DOI: 10.1039/d0ra08060h
  65. T.A. Witten, L.M. Sander. Phys. Rev. Lett., 47 (19), 1400 (1981). DOI: 10.1103/PhysRevLett.47.1400
  66. Z. Yang, W.W. Tjiu, W. Fan, T. Liu. Electrochim. Acta, 90, 400 (2013). DOI: 10.1016/j.electacta.2012.12.038
  67. X. Qin, H. Wang, X. Wang, Z. Miao, Y. Fang, Q. Chen, X. Shao. Electrochim. Acta, 56 (9), 3170 (2011). DOI: 10.1016/j.electacta.2011.01.058
  68. R.W.G. Wyckoff.  Crystal Structures (Interscience publishers, NY., 1963)
  69. K. Uchinokura, T. Sekine, E. Matsuura. Solid State Commun., 11 (1), 47 (1972). DOI: 10.1016/0038-1098(72)91127-1
  70. J. Chowdhury, M. Ghosh. J. Colloid Interface Sci., 277 (1), 121 (2004). DOI: 10.1016/j.jcis.2004.04.030
  71. Y. Wang, D. Li, P. Li, W. Wang, W. Ren, S. Dong, E. Wang. J. Phys. Chem. C, 111 (45), 16833 (2007). DOI: 10.1021/jp074519u
  72. P. Simakova, E. Kocivsova, M. Prochazka. J. Nanomater., 2021, 4009352 (2021). DOI: 10.1155/2021/4009352
  73. E.C. Le Ru, E.J. Blackie, M. Meyer, P.G. Etchegoin. J. Phys. Chem. C, 111 (37), 13794 (2007). DOI: 10.1021/jp0687908
  74. P. Hildebrandt, M. Stockburger. J. Phys. Chem., 88 (24), 5935 (1984). DOI: 10.1021/j150668a038

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.