09

Развитые Ag наноструктуры на *c*-Si в качестве подложек с гигантским комбинационным рассеянием для детектирования трифенилметанового красителя

© К.В. Пригода,¹ А.А. Ермина,¹ В.О. Большаков,¹ В.С. Левицкий,² Н.А. Бельская,¹ Д.П. Марков,¹ Ю.А. Жарова¹

¹ Физико-технический институт им. А.Ф. Иоффе РАН,
 194021 Санкт-Петербург, Россия
 ² Научно-технический центр тонкопленочных технологий в энергетике,
 194064 Санкт-Петербург, Россия
 e-mail: piliouguina@mail.ioffe.ru

Поступило в Редакцию 23 апреля 2024 г. В окончательной редакции 23 апреля 2024 г. Принято к публикации 23 апреля 2024 г.

Рассмотрены дендритные наноструктуры серебра на кремнии в качестве подложек с гигантским комбинационным рассеянием света. Структуры получены методом химического восстановления $AgNO_3$ на поверхности кремния с разным временем осаждения металла. Качественно определено положение "горячих точек" исследуемых структур с помощью моделирования в программе COMSOL Multiphysics, а также рассчитаны коэффициенты усиления от структур $\sim 10^7$. Спектроскопия гигантского комбинационного рассеяния света показала надежное детектирование на изготовленных подложках водного раствора красителя бриллиантового зеленого, предел обнаружения которого составил 10^{-12} М. Используя экспериментальные данные, были определены коэффициенты усиления для полученных образцов, достигающие значения 10^8 для наименее развитой структуры и 10^7 для более развитых.

Ключевые слова: гигантское комбинационное рассеяние, нанодендриты Ag, кремний, горячие точки, бриллиантовый зеленый.

DOI: 10.61011/JTF.2024.07.58350.128-24

Введение

В настоящее время загрязнение красителями сточных вод является серьезной проблемой, так как они могут производить негативное воздействие как на окружающую среду, так и на здоровье человека [1,2]. Существует огромное количество разнообразных красителей, которые широко применяются в пищевой, фармацевтической, косметической, полиграфической, красильной и текстильной промышленностях, а также в аквакультуре [1-5]. В настоящей работе исследуется синтетический анилиновый краситель трифенилметанового ряда — бриллиантовый зеленый. Этот краситель используется в качестве местного антисептика, дерматологического средства, добавки к кормам для птиц от распространения плесени, кишечных паразитов и грибков, а также при окраске текстиля и бумаги [6,7]. Трифенилметановый ряд по химическому строению, а именно по природе хромофорных групп, относится к подгруппе полиметиновых красителей [5,8], т.е. красителей, содержащих более одной метиновой группы. Такие красители ранее широко применялись как бактерицидные препараты [9], например, против грибковых и паразитарных инфекций у рыб, благодаря своей эффективности, доступности и низкой цене [10]. После обнаружения токсичности данного ряда красителей их применение в разных странах было существенно ограничено или запрещено [11]. Даже в низких концентрациях такие красители могут быть канцерогенными и мутагенными для живых существ [7,12]. Некоторые их остатки все еще обнаруживаются в морепродуктах и сточных водах [4,10], в связи с чем выявление молекул таких красителей в низких концентрациях в различных биологических аналитах (например, при анализе проб воды) является актуальной задачей.

В последние десятилетия большинство исследователей были сосредоточены на разработке различных методов очистки воды от красильных отходов [5,6,12–14]. В работе [15] авторы подробно описывают различные способы очистки, предлагаемые на данный момент: от использования активированного угля до фотокаталического окисления. Однако первостепенной задачей является обнаружение красителей в пробах различных биологических образцов: как в пробах воды, так и в тканях животных. Существует множество методов детектирования трифенилметановых красителей: электрохимический [16], электролюминесцентный [17], иммуноферментный [18], методика жидкостной хроматографии [11,19], масс-спектрометрии [10], а также спектроскопии комбинационного рассеяния света (КРС) [20-22] И Т.Д.

Спектроскопия гигантского комбинационного рассеяния (ГКР) света является одним из самых чувствительных неразрушающих аналитических способов детектирования различных аналитов с высокой скоростью получения отклика [23-26]. Она позволяет обнаруживать и исследовать сверхмалое количество веществ на различных подложках вплоть до отдельных молекул [27]. Методика спектроскопии ГКР заключается в получении усиления сигнала КРС от исследуемого образца. Этого можно достичь, во-первых, за счет возбуждения локализованного плазмонного резонанса на специально созданной подложке внешней электромагнитной волной и, как следствие, возникновения плазмонных эффектов. Во-вторых, сигнал КРС на различных, как правило металлических, наноструктурах может усиливаться благодаря наличию "горячих точек" [28]. Сильно развитые по морфологии структуры с большей вероятностью могут иметь множество "горячих точек" и, как следствие, высокий коэффициент усиления (EF (от англ. Enhancement Factor)) KPC [29].

В последние годы спектроскопия ГКР привлекает все большее внимание, в связи с чем использование ГКР подложек резко возросло в самых разных областях. Например, они используются в биологической и медицинской диагностике для детектирования и изучения вирусов, клеток, белков, тканей и ДНК [30-33], и в криминалистике для идентификации запрещенных и опасных веществ или определения подлинности продукции [34]. Также они могут быть использованы в области экологии для обнаружения загрязняющих веществ и токсичных красителей [21,35-40] и в пищевой промышленности (проверка на пестициды и т.д.) [38,41-43]. Существует большое множество различных по морфологии ГКР структур, они могут представлять собой: металлические наночастицы, нанесенные на подложку [44,45]; гибридные структуры, в которые с помощью различных методов внедрены наночастицы или нанопленки одного или нескольких металлов [40,46,47]; структуры в виде "наноцветов" металла [48-50]; дендритные металлические структуры [31,51,52]. Лучшими металлами для изготовления ГКР структур считаются серебро и золото [53-55].

В настоящей работе в качестве ГКР подложек представлены серебряные дендритные структуры, сформированные на кремнии. Благодаря развитой морфологии дендритной структуры резко возрастает интенсивность локального электромагнитного поля из-за наличия "горячих точек", которые возникают: 1) на острых кончиках с большой кривизной на стволах и ветках дендритной структуры, которые действуют как "громоотвод"; 2) в зазорах нанометрового размера между соседними ветвями и листьями дендритной структуры. Поэтому серебряные дендриты представляют собой наноструктуры со множеством "горячих точек", которые, в свою очередь, играют определяющую роль в усилении КРС. Серебро было выбрано нами в связи с тем, что оно химически стабильно, легко синтезируется и намного

12 Журнал технической физики, 2024, том 94, вып. 7

дешевле других благородных металлов, использующихся для изготовления ГКР подложек. Также различные детектируемые вещества (аналиты) адсорбируются на поверхности серебра с большей вероятностью, чем на других благородных металлах [56], что является его преимуществом. Мы предлагаем простой и воспроизводимый метод изготовления ГКР структур, не требующий дорогостоящего оборудования. Метод химического восстановления нитрата серебра на поверхности кремния позволяет создавать дендритные металлические наноструктуры с равномерным распределением по площади и контролем морфологии структуры за счет варьирования времени осаждения и концентрации используемого раствора. В качестве подложки был выбран кремний, прежде всего, потому что в большинстве случаев он нейтрален для молекул аналитов. В предлагаемом в настоящей работе методе кремний является восстановителем, если говорить точнее, то в этом процессе серебро и кремний образуют окислительновосстановительную пару. Таким образом, кремний сам участвует в окислительно-восстановительной реакции, поэтому часть его поверхности подтравливается, что обеспечивает хорошую адгезию серебра к подложке [54]. Методом спектроскопии ГКР был исследован отклик от изготовленных нами структур с нанесенным на их поверхности водным раствором бриллиантого зеленого в сверхмалой концентрации, а также определен ЕF для каждого образца. С помощью численного моделирования было качественно определено положение "горячих точек" и численный EF.

1. Методика эксперимента

1.1. Создание наноструктур

В качестве подложки для создания серебряных дендритных структур был использован монокристаллический кремний (c-Si) *р*-типа с удельным сопротивлением 10 Ω·ст и кристаллографической ориентацией (111). После стандартной RCA (Radio Corporation of America) отмывки кремниевые пластины помещались в раствор $0.02 \text{ M} \text{ AgNO}_3 + 5 \text{ M} \text{ HF}$ в соотношении 5:1. В данном растворе происходит восстановление серебра на поверхности кремниевой пластины и формирование дендритных наноструктур. Для создания дендритных структур разной морфологии было выбрано время обработки в растворе — 40 s (образец S1), 60 s (образец S2) и 90 s (образец S3) при комнатной температуре. На рис. 1 схематично представлены все этапы эксперимента: отмывка кремниевой подложки, формирование дендритной наноструктуры, нанесение аналита (в настоящей работе выбран синтетический анилиновый краситель трифенилметанового ряда — бриллиантовый зеленый (БЗ)), исследование аналита на поверхности серебряной дендритной структуры методом КРС и анализ полученных данных.

Рис. 1. Схема основных этапов эксперимента: *1* — подготовка кремниевой пластины и создание дендритных наноструктур Ag; *2* — нанесение красителя (БЗ); *3* — исследование методом комбинационного рассеяния света; *4* — анализ полученных данных.

1.2. Характеризация наноструктур

Морфологический анализ гибридных структур проводился на растровом электронном микроскопе (РЭМ) JSM-7001F (JEOL, Япония) в режиме вторичных электронов и при ускоряющем напряжении 5 kV. По РЭМ изображениям и с помощью программы с открытым исходным кодом для обработки изображений ImageJ проводился статистический анализ наноструктур.

Рентгеноструктурный анализ был выполнен на рентгеновском дифрактометре ДРОН-8Н (ИЦ "Буревестник", Россия) в геометрии Брэгга-Брентано в диапазоне углов 20 от 30 до 67 deg. Дифрактометр оснащен рентгеновской трубкой с медным анодом, сцинтилляционным точечным детектором БДС-25-10 (ИЦ "Буревестник", Россия) и одним параболическим изогнутым зеркалом Гебеля, расположенным на пути луча так, чтобы линия фокусировки источника рентгеновского излучения была прямой. Сканирование проводилось в непрерывном режиме со скоростью 1 deg/min. Спектры КРС были измерены на спектрометре Labram HR800 (HORIBA, Франция), оснащенном лазером, генерирующим излучение на длине волны 633 nm (He-Ne-лазер) с мощностью 1.6 μ W для предотвращения повреждения аналита. Во время измерений использовалась решетка 600 lines/mm, а для фокусировки луча лазера на поверхности образца в пятно диаметром ~ 1 μ m применялся объектив Olympus 100 × (NA = 0.9). Воспроизводимость КРС измерений осуществлялась за счет сканирования площади пятна от аналита на ГКР подложке 30 × 40 μ m с интервалом 5 μ m.

2. Результаты

2.1. Морфологии полученных подложек

На рис. 2 представлены РЭМ изображения полученных серебряных дендритных наноструктур на *c*-Si-подложке. С помощью полученных изображений была рассчитана средняя толщина слоя серебра на всех подложках: для образца S1 — 259 nm, для образца

Рис. 2. РЭМ изображения дендритных наноструктур Аg. Вид сверху: S1 (*a*), S2 (*b*), S3 (*c*). Поперечное сечение: средняя высота структур S1 — 259 (*d*), S2 — 627 (*e*), S3 — 1084 nm (*f*).

S2 - 627 nm, для образца S3 - 1084 nm. На рисунке хорошо видно, как с увеличением времени развивается морфология серебряной структуры от отдельно стоящих основных "стволов" (образец S1) до "стволов с многочисленными симметричными ветвями и листьями" (образцы S2 и S3), что резко увеличивает удельную площадь серебряной структуры. В предыдущих наших работах [57–59] мы исследовали оптические свойства и морфологию структур, полученных при осаждении серебра на кремниевую подложку из раствора 0.02 M AgNO₃ + 5 M HF (1:1) в течение 30 s. В таком режиме осаждения не наблюдалось формирование дендритных структур, а были получены островковые пленки серебра со средней толщиной 40–45 nm.

Химическое осаждение на кремниевую пластину серебра из водного раствора, содержащего ионы серебра (Ag⁺) и HF, основано на электрохимической окислительно-восстановительной реакции, при которой на поверхности кремния одновременно происходят как анодные, так и катодные процессы [60]. Электрохимические реакции представлены следующими уравнениями: анодный

$$Si + 6HF = H_2SiF_6 + 4H^+ + 4e^-,$$
 (1)

катодный

$$Ag^+ + e^- = Ag. \qquad (2)$$

В приведенных выше реакциях е⁻ обозначает электрон. H₂SiF₆ является растворимым соединением, поэтому реакция (1) представляет собой реакцию удаления Si травлением. Между тем реакция (2) представляет собой реакцию восстановления ионного Ag до атомарного Ag на поверхности *c*-Si.

Известно, что покрытие дендритными наноструктурами поверхности кремниевой пластины и развитие этих структур зависит от концентрации AgNO₃ в растворе [60,61] или времени осаждения [62,63], также морфология дендритной структуры Ад может изменяться в зависимости от метода осаждения: химическое осаждение или электрохимическое осаждение при подаче напряжения [61]. Авторы работ [54,61,64] в течение нескольких лет проводят исследования и сравнения методов химического и электрохимического осаждения серебра на поверхность кремния, приводят разные режимы и разные серебросодержащие электролиты, демонстрируют различие морфологии дендритной структуры, а также показывают, что при электрохимическом осаждении дендритные наноструктуры получаются более развитыми по сравнению с методом химического осажления.

При этом для описания механизма роста и развития дендритной структуры серебра используют модель диффузионно-ограниченной агрегации и анизотропный рост кристаллов [62,65-67]. Процесс формирования дендритной структуры можно описать следующим образом: в процессе броуновского движения в растворе частицы серебра, находя низкоэнергетические места на подложке, осаждаются на нее и начинают слипаться друг с другом, образуя первоначальный, можно сказать, нуклеационный слой наночастиц Ag. Такой слой можно наблюдать при малых временах осаждения или при очень малых концентрациях Ад в растворе, когда серебряные наночастицы целиком или почти полностью образуют островковый слой на поверхности кремниевой пластины. С увеличением времени обработки в электролите, в котором достаточное количество серебра (как в случае диффузии из неограниченного источника), или при использовании раствора с большими концентрациями (избыточная концентрация) свободные наночастицы будут постоянно диффундировать к образовавшемуся нуклеационному слою, образуя более крупные частицы, а далее, при столкновении друг с другом с последующей агрегацией, образовывать дендриты.

Известно, что конечная морфология наночастиц определяется различной скоростью роста граней кристаллов. Поскольку серебро является металлом с гранецентрированной кубической решеткой, механизм роста более эффективен в направлениях (111), чем в других направлениях. Таким образом, на начальном этапе наночастицы серебра будут расти вдоль направления (111), образуя стержнеобразный серебряный ствол (образец S1). Далее продолжается рост структуры с прикреплением новых частиц к стволу, рост этих прикрепленных наночастиц серебра также начинается в направлении [111] с образованием дальнейших вторичных (образец S2) и третичных ветвей (образец S3). По мере протекания реакции все стволы, ветви и листья становятся больше, толще и плотнее, образуя упорядоченные, хорошо ориентированные серебряные дендритные наноструктуры. В процессе формирования дендритных наноструктур серебра важную роль играет как диффузионный контроль, так и процесс ориентированного роста.

2.2. Рентгеноструктурный анализ

Рентгенограммы сформированных дендритных структур Ag представлены на рис. 3. На экспериментальной рентгенограмме выявлен ряд пиков брэгтовского отражения при значениях углов 2θ 37.8, 43.9 и 64.2 deg, которые соответствуют плоскостям (*hkl*) — (111), (200) и (220). Рентгенографическое исследование подтвердило, что дендритные структуры Ag представляют собой серебро с гранецентрированной кубической кристалли-

Рис. 3. Рентгенограммы дендритных наноструктур Ag (образцы S1, S2 и S3).

ческой структурой (JCPDS, номер файла 9008459) [68]. Таким образом, серебряные наночастицы находятся в металлической фазе и без примесей. С увеличением количества серебра на образцах растет интенсивность рентгеновской дифракции, что указывает на рост степени кристалличности.

2.3. Спектроскопия КРС

Перед исследованием ГКР на дендритах Ag с нанесенным водным раствором БЗ были проведены измерения КРС исходной *c*-Si пластины и дендритных наноструктур Ag на *c*-Si без красителя. На всех спектрах наблюдается линия в области 520 сm⁻¹, соответствующая рассеянию на оптических фононах 1-го порядка кристаллической решетки *c*-Si и менее интенсивная полоса КРС 2-го порядка *c*-Si (940–980 сm⁻¹) [40,69]. Также на спектре от дендритных Ag наноструктур отчетливо видна интенсивная полоса при ~ 240 сm⁻¹, обусловленная валентными колебаниями связей Ag-N [70].

На каждую подложку наносилась капля (10 µ1) водного раствора БЗ разной концентрации, затем сушилась на воздухе в течение 2 h. На рис. 4 представлены усредненные значения 63 спектров ГКР для исследуемых образцов с нанесенным водным раствором БЗ в концентрациях 10^{-11} , 10^{-10} , 10^{-8} и 10^{-7} М на подложках S1, S2 и S3. На спектрах ГКР отчетливо видны все характеристические "отпечатки пальцев" БЗ [71]. Основные полосы на 1616, 1593, 1491 и 1288 ст⁻¹ относятся к валентным колебаниям кольца $\nu(C-C)$. Пики при 1426 и 1363 ст⁻¹ относятся к валентному колебанию v(N-ph) + кольцевому колебанию и валентному колебанию $\nu(N-ph)$ соответственно. А пики при 1182, 1162, 1007 и $905 \,\mathrm{cm}^{-1}$ относятся к плоскостному изгибу кольца (С-Н). Наибольшая интенсивность ГКР сигнала наблюдается от образца S1, затем от S2. Подложка S3 демонстрирует наименьшее усиление, возможны две причины: 1) со временем дендритная структура становится сильно разветвленной, и сигнал КРС становится слабее из-за более плотных ветвей, зазоры между дендритами значительно уменьшаются, что уменьшает количество "горячих точек" в образце и отрицательно влияет на характеристики ГКР; 2) большая толщина дендритной структуры ($\sim 1 \, \mu m$) экранирует сигнал от БЗ, который впитался вглубь к основаниям дендритов. Несмотря на то, что S1 менее развит морфологически, по сравнению с S2 и S3, его высота оказалась более эффективной для абсорбирования кристаллов БЗ. Была также нанесена концентрация 10^{-12} М на структуры, интенсивность ГКР $\sim 10 \, {\rm cps}$ на всех структурах. Таким образом, предел обнаружения БЗ от исследуемых в настоящей работе структур равен 10^{-12} М.

На рис. 5 представлена зависимость интенсивности всех спектров ГКР, полученных от исследуемых образцов при наиболее интенсивном пике $1616 \,\mathrm{cm}^{-1}$, от концентрации водного раствора БЗ со стандартным отклонением, показанным столбиками погрешностей. Для

образца S1 стандартное отклонение сигнала ГКР значительно выше по сравнению с другими образцами.

Для наглядной демонстрации на рис. 6 показаны все спектры, измеренные на площади $30 \times 40 \,\mu\text{m}$ с интервалом $5 \,\mu\text{m}$, со всех исследуемых образцов с концентрацией 10^{-7} М. Встречаются отдельные пики, интенсивность которых в два раза превышает интенсивность сигнала на всей измеряемой площади и искажает общую картину сигнала от аналита. Это может быть связано с попаданием лазера на край пятна от аналита ("кофейное кольцо"). Хорошо известно, что самопроизвольное высыхание некоторых капель жидкости на определенных твердых поверхностях образует узор "кофейное кольцо" [72].

Очень важным параметром, который следует учитывать при работе с ГКР подложками, является коэффици-

Рис. 4. Усредненные спектры ГКР для образцов S1 (*a*), S2 (*b*), S3 (*c*) с водным раствором БЗ с концентрациями: $I - 10^{-7}$, $2 - 10^{-8}$, $3 - 10^{-10}$, $4 - 10^{-11}$ М. Для каждого образца указан масштаб интенсивности.

Рис. 5. Интенсивность ГКР в зависимости от концентрации водного раствора БЗ со стандартным отклонением. Кривая *1* — образец S1, *2* — S2, *3* — S3.

ент усиления (EF), который может дать количественную оценку эффективности подложек в увеличении сигнала КРС от данной молекулы. Аналитический EF рассчитывался по среднему значению наиболее выраженного пика при 1616 ст⁻¹, используя уравнение [73]:

$$\mathrm{EF} = \frac{I}{C} \frac{C_0}{I_0},\tag{3}$$

где I и I_0 — интенсивности сигналов от аналита на ГКР подложке и чистой c-Si пластине соответственно; C и C_0 — концентрация аналита, нанесенная на ГКР подложку и чистую c-Si пластину соответственно.

Рассматривая концентрацию аналита 10^{-7} М, имеем среднюю интенсивность сигнала ГКР 11375, 7767 и 1732 а.u. для S1, S2 и S3 соответственно. На *c*-Si был нанесен аналит с концентрацией 10^{-3} М, однако стоит отметить, что отклика не было видно из-за люминесценции, поэтому интенсивность сигнала КРС примем за 1 а.u. Таким образом, EF для S1 равен $1.14 \cdot 10^8$, для

Рис. 6. 3D спектры ГКР от S1 (a), S2 (b), S3 (c) с водным раствором Б3 (10^{-7} M), измеренные на площади $30 \times 40 \,\mu$ m с интервалом $5 \,\mu$ m.

Рис. 7. Численное моделирование распределения напряженности электрического поля плоской электромагнитной волны, падающей под нормальным углом на одну (a) и две (b) дендритные Ag наноструктуры на *c*-Si подложке. Цвет показывает значение $lg(E/E_0)$, где E — локальное и E_0 — падающее электрические поля соответственно.

S2 равен 7.8 · 10⁷, а для S3 составил $1.73 \cdot 10^7$. Ниже представлены расчеты численного EF.

2.4. Численный расчет

Численный расчет EF проводился в коммерческой программе COMSOL Multiphysics с использованием метода конечных элементов. Была разработана трехмерная модель с периодическими граничными условиями вдоль осей x и y (рис. 7). Падающее поле представляет собой плоскую волну с нормальным падением вдоль оси z. Идеально согласованные слои (PML) использовались сверху и снизу модели, чтобы не учитывать переотражение волны от границ. Фор-

ма модели была условно задана по РЭМ изображению (рис. 2, e). Высота дендритной структуры имеет значение 540 nm, с диаметром в основании и в вершине 100 и 8 nm соответственно, "ветви" же имеют размеры от 100 до 10 nm в зависимости от положения.

Численный EF оценивался по следующей формуле [74]:

$$EF_{calc} = \frac{1}{S} \iint_{S} \frac{|E|^{4}}{|E_{0}|^{4}} dS, \qquad (4)$$

где *E* и *E*₀ — векторы локального и падающего электрических полей соответственно; *S* — поверхность

интегрирования, расположенная на расстоянии 0.1 nm от границы раздела воздух/Аg.

Таким образом, на длине волны 633 nm численное значение EF_{calc} для модели, представленной на рис. 7, *a*, равно $5.2 \cdot 10^7$, а для модели из двух наноструктур (рис. 7, *b*) EF_{calc} составил $8 \cdot 10^6$.

Заключение

Были получены ГКР подложки, представляющие собой дендритные Ag наноструктуры, методом химического восстановления AgNO₃ на поверхности c-Si с разным временем осаждения Ag.

Предел обнаружения бриллиантового зеленого от исследуемых в настоящей работе структур составил 10^{-12} М. Было выявлено, что наибольшая интенсивность сигнала ГКР наблюдается от образца S1 (40 s, 259 nm), затем от S2 (60 s, 627 nm), а подложка S3 (90 s, 1084 nm) демонстрирует наименьшее усиление, что, вероятно, связано с морфологией структуры. Экспериментальные коэффициенты усиления от исследуемых подложек с нанесенным аналитом для образца S1 — 1.14 · 10⁸, для S2 — 7.8 · 10⁷, а для S3 — 1.73 · 10⁷.

С помощью программного пакета COMSOL Multiphysics было качественно определено положение "горячих точек" исследуемых структур, а также был рассчитан коэффициент усиления на длине волны 633 nm, который равен $5.2 \cdot 10^7$ для модели из одного стоящего Ag нанодендрита, а для модели из двух дендритов — $8 \cdot 10^6$.

Исследования ГКР демонстрируют высокую степень обнаружения аналита на изготовленных структурах. Из численных расчетов и экспериментальных данных однозначно видно, что данные структуры очень перспективны в качестве ГКР подложек для обнаружения различных красителей трифенилметанового ряда в предельно низких концентрациях.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда (проект № 24-22-00334).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- R. Kant. Natural Science, 4 (1), 22 (2012). DOI: 10.4236/ns.2012.41004
- [2] A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem. RSC Adv., 4 (70), 37003 (2014). DOI: 10.1039/C4RA06658H
- [3] K. Hunger. In: Industrial Dyes: Chemistry, Properties, Applications, ed. by K. Hunger (Wiley Online Books, 2002), DOI: 10.1002/3527602011.ch1

- [4] А.В. Сорокин, А.А. Комаров. Ветеринария, 1, 55 (2020).
 DOI: 10.30896/0042-4846.2020.23.1.54-60
- [5] S.R. Couto. Biotechnol. Adv., 27 (3), 227 (2009).
 DOI: 10.1016/j.biotechadv.2008.12.001
- [6] B.K. Nandi, A. Goswami, M.K. Purkait. J. Hazard. Mater., 161 (1), 387 (2009). DOI: 10.1016/j.jhazmat.2008.03.110
- [7] A. Mittal, D. Kaur, J. Mittal. J. Colloid Interface Sci., 326 (1), 8 (2008). DOI: 10.1016/j.jcis.2008.07.005
- [8] T. Gessner, U. Mayer. In: Ullmann's Encyclopedia of Industrial Chemistry, ed. by Claudia Ley (Wiley-VCH, 2000), DOI: 10.1002/14356007.a27_179
- J. Liu, Q. Zhao, W. Cao, H. Zhao, J. Cheng,
 B. Li, X. Yang. Microchem. J., 158, 105275 (2020).
 DOI: 10.1016/j.microc.2020.105275
- [10] N. López-Gutiérrez, R. Romero-González, V.J.L. Martínez, A.G. Frenich. Anal. Methods, 5 (14), 3434 (2013). DOI: 10.1039/C3AY40485D
- [11] W.C. Andersen, S.B. Turnipseed, C.M. Karbiwnyk, R.H. Lee, S.B. Clark, W.D. Rowe, M.R. Madson, K.E. Miller. Anal. Chim. Acta, 637 (1-2), 279 (2009). DOI: 10.1016/j.aca.2008.09.041
- [12] W. Przystaś, E. Zabłocka-Godlewska, E. Grabińska-Sota. Water Air Soil Pollut., 223, 1581 (2012). DOI: 10.1007/s11270-011-0966-7
- [13] W. Przystaś, E. Zabłocka-Godlewska, E. Grabińska-Sota. Water Air Soil Pollut., 224, 1534 (2013). DOI: 10.1007/s11270-013-1534-0
- [14] Y.-Q. Liu, N. Maulidiany, P. Zeng, S. Heo. Chemosphere, 263, 128312 (2021). DOI: 10.1016/j.chemosphere.2020.128312
- [15] X. Lu, C. Qiman, N. Xinkai, Z. Yilin, C. Yu'e, H. Qing, L. Miaoqing, W. Shuang, L. Jihong. Molecules, 28 (14), 5401 (2023). DOI: 10.3390/molecules28145401
- [16] H. Yi, W. Qu, W. Huang. Microchim. Acta, 160, 291 (2008).
 DOI: 10.1007/s00604-007-0814-z
- [17] Y. Zhou, X. Li, Z. Pan, B. Ye, M. Xu. Food Anal. Methods, 12, 1246 (2019). DOI: 10.1007/s12161-019-01459-x
- [18] G. Singh, T. Koerner, J.-M. Gelinas, M. Abbott, B. Brady, A.-C. Huet, C. Charlier, P. Delahaut, S.B. Godefroy. Food Addit. Contam. Part A, 28 (6), 731 (2011). DOI: 10.1080/19440049.2011.567360
- [19] K. Mitrowska, A. Posyniak, J. Zmudzki. J. Chromatogr. A, 1089 (1-2), 187 (2005). DOI: 10.1016/j.chroma.2005.07.004
- [20] M. Tang, L. Qin, M. Luo, H. Shen, S.-Z. Kang, T. Zhang, X. Li. J. Environ. Chem. Eng., 10 (3), 108040 (2022). DOI: 10.1016/j.jece.2022.108040
- [21] A.A. Ermina, N.S. Solodovchenko, V.S. Levitskii, N.A. Belskaya, S.I. Pavlov, V.O. Bolshakov, V.A. Tolmachev, Yu.A. Zharova. Mater. Sci. Semicond. Process., 169, 107861 (2024). DOI: 10.1016/j.mssp.2023.107861
- [22] J. Jiang, Q. Shen, P. Xue, H. Qi, Y. Wu, Y. Teng, Y. Zhang, Y. Liu, X. Zhao, X. Liu. ChemistrySelect, 5(1), 354 (2020). DOI: 10.1002/slct.201903924
- [23] J. Langer, D.J. de Aberasturi, J. Aizpurua, R.A. Alvarez-Puebla, B. Auguié, J.J. Baumberg, G.C. Bazan, S.E.J. Bell, A. Boisen, A.G. Brolo, J. Choo, Dana Cialla-May, V. Deckert, L. Fabris, K. Faulds, F.J. García de Abajo, R. Goodacre, D. Graham, A.J. Haes, Ch.L. Haynes, Ch. Huck, T. Itoh, M. Käll, J. Kneipp, N.A. Kotov, H. Kuang, E.C. Le Ru, H.K. Lee, J.-F. Li, X. Yi Ling, S.A. Maier, Th. Mayerhöfer, M. Moskovits, K. Murakoshi, J.-M. Nam, Sh. Nie, Y. Ozaki, I. Pastoriza-Santos, J. Perez-Juste, J. Popp, A. Pucci, S. Reich, B. Ren, G.C. Schatz, T. Shegai, S. Schlücker, L.-L. Tay,

K.G. Thomas, Zh.-Q. Tian, R.P. Van Duyne, T. Vo-Dinh, Y. Wang, K.A. Willets, Ch. Xu, H. Xu, Y. Xu, Y.S. Yamamoto, B. Zhao, L.M. Liz-Marzán. ACS Nano, **14** (1), 28 (2020). DOI: 10.1021/acsnano.9b04224

- [24] X. Zheng, Z. Ye, Z. Akmal, C. He, J. Zhang, L. Wang. Chem. Soc. Rev., 53 (2), 656 (2024). DOI: 10.1039/D3CS00462G
- [25] R. Peng, T. Zhang, S. Yan, Y. Song, X. Liu, J. Wang. Nanomaterials, 13 (22), 2968 (2023). DOI: 10.3390/nano13222968
- [26] W. Li, X. Zhao, Z. Yi, A.M. Glushenkov, L. Kong. Anal. Chim. Acta, 984, 19 (2017). DOI: 10.1016/j.aca.2017.06.002
- [27] K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld. Phys. Rev. Lett., 78 (9), 1667 (1997). DOI: 10.1103/PhysRevLett.78.1667
- [28] L. Long, W. Ju, H.-Y. Yang, Z. Li. ACS Mater. Au, 2 (5), 552 (2022). DOI: 10.1021/acsmaterialsau.2c00005
- [29] M.S. Goh, Y.H. Lee, S. Pedireddy, I.Y. Phang, W.W. Tjiu, J.M.R. Tan, X.Y. Ling. Langmuir, 28 (40), 14441 (2012). DOI: 10.1021/la302795
- [30] Z. Zhang, J. Wang, K.B. Shanmugasundaram, B. Yeo, A. Möller, A. Wuethrich, L.L. Lin, M. Trau. Small, 16 (13), 1905614 (2020). DOI: 10.1002/smll.201905614
- [31] K. Prigoda, A. Ermina, V. Bolshakov, A. Tabarov, V. Levitskii, O. Andreeva, A. Gazizulin, S. Pavlov, D. Danilenko, V. Vitkin, Yu. Zharova. Opt. Mater., 149, 114977 (2024). DOI: 10.1016/j.optmat.2024.114977
- [32] A. Tabarov, V. Vitkin, O. Andreeva, A. Shemanaeva, E. Popov,
 A. Dobroslavin, V. Kurikova, O. Kuznetsova, K. Grigorenko,
 I. Tzibizov, A. Kovalev, V. Savchenko, A. Zheltuhina,
 A. Gorshkov, D. Danilenko. Biosensors, 12 (12), 1065 (2022).
 DOI: 10.3390/bios12121065
- [33] S. Aitekenov, A. Sultangaziyev, A. Boranova, A. Dyussupova,
 A. Ilyas, A. Gaipov, R. Bukasov. Sensors, 23 (3), 1605 (2023).
 DOI: 10.3390/s23031605
- [34] T. Liyanage, A. Rael, S. Shaffer, S. Zaidi, J.V. Goodpaster, R. Sardar. Analyst, **143** (9), 2012 (2018).
 DOI: 10.1039/C8AN00008E
- [35] J.B.M. Parambath, G. Kim, C. Han A.A. Mohamed. Res. Chem. Intermed., 49, 1259 (2023).
 DOI: 10.1007/s11164-022-04913-4
- [36] H. Sun, X. Li, Z. Hu, C. Gu, D. Chen, J. Wang, B. Li, T. Jiang, X. Zhou. Appl. Surf. Sci., 556, 149748 (2021). DOI: 10.1016/j.apsusc.2021.149748
- [37] X. He, X. Zhou, Y. Liu, X. Wang. Sens. Actuators B Chem., 311, 127676 (2020). DOI: 10.1016/j.snb.2020.127676
- [38] I.B. Ansah, S.H. Lee, C. Mun, J.-Y. Yang, J. Park, S.-Y. Nam, S. Lee, D.-H. Kim, S.-G. Park. Sens. Actuators B Chem., 379, 133172 (2023). DOI: 10.1016/j.snb.2022.133172
- [39] M.K. Pham, D.T.N. Nga, Q.D. Mai, V.M. Tien, N.Q. Hoa, V.D. Lam, H.A. Nguyen, A.-T. Le. Anal. Methods, 15 (39), 5239 (2023). DOI: 10.1039/D3AY01374J
- [40] A.A. Ermina, N.S. Solodovchenko, K.V. Prigoda, V.O. V.S. Levitskii, Bolshakov, M.Yu. Maximov, Pavlov, Yu.M. Koshtyal, S.I. V.A. Tolmachev, Yu.A. Zharova. Appl. Surf. Sci., 608, 155146 (2023). DOI: 10.1016/j.apsusc.2022.155146
- [41] X. Wang, X. Zhu, Y. Chen, M. Zheng, Q. Xiang, Z. Tang,
 G. Zhang, H. Duan. ACS Appl. Mater. Interfaces, 9 (36), 31102 (2017). DOI: 10.1021/acsami.7b08818
- [42] J. Chen, Y. Huang, P. Kannan, L. Zhang, Z. Lin, J. Zhang, T. Chen, L. Guo. Anal. Chem., 88 (4), 2149 (2016). DOI: 10.1021/acs.analchem.5b03735

- [43] Z. Deng, X. Chen, Y. Wang, E. Fang, Z. Zhang, X. Chen. Anal. Chem., 87 (1), 633 (2015). DOI: 10.1021/ac503341g
- [44] A. Milewska, V. Zivanovic, V. Merk, U.B. Arnalds, Ó.E. Sigurjónsson, J. Kneipp, K. Leosson. Biomed. Opt. Express, 10, 6172 (2019). DOI: 10.1364/BOE.10.006172
- [45] K. Prigoda, A. Ermina, V. Bolshakov, D. Nazarov, I. Ezhov, O. Lutakov, M. Maximov, V. Tolmachev, Y. Zharova. Coatings, 12 (11), 1748 (2022). DOI: 10.3390/coatings12111748
- [46] D.A. Nazarovskaia, P.A. Domnin, O.D. Gyuppenen,
 I.I. Tsiniaikin, S.A. Ermolaeva, K.A. Gonchar, L.A. Osminkina.
 Bull. Russ. Acad. Sci. Phys., 87 (1), 41 (2023).
 DOI: 10.1134/S1062873823704385
- [47] А.А. Ермина, Н.С. Солодовченко, К.В. Пригода, В.С. Левицкий, С.И. Павлов, Ю.А. Жарова. ФТП, 57 (4), 243 (2023). DOI: 10.21883/FTP.2023.04.55893.07k
 [A.A. Ermina, N.S. Solodovchenko, K.V. Prigoda, V.S. Levitskii, S.I. Pavlov, Yu.A. Zharova. Semicond, 57 (4), 241 (2023). DOI: 10.61011/SC.2023.04.56420.07k
- [48] Y. Lu, C.-Y. Zhang, D.-J. Zhang, R. Hao, Y.-W. Hao, Y.-Q. Liu. Chin. Chem. Lett., 27 (5), 689 (2016). DOI: 10.1016/j.cclet.2016.01.032
- [40] A. Khorshidi, N. Mardazad. Res. Chem. Intermed., 42, 7551 (2016). DOI: 10.1007/s11164-016-2552-5
- [50] L.A. Osminkina, O. Žukovskaja, S.N. Agafilushkina, E. Kaniukov, O. Stranik, K.A. Gonchar, D. Yakimchuk, V. Bundyukova, D.A. Chermoshentsev, S.A. Dyakov, N.A. Gippius, K. Weber, J. Popp, D. Cialla-May, V. Sivakov. Appl. Surf. Sci., 507, 144989 (2020). DOI: 10.1016/j.apsusc.2019.144989
- [51] D. Ge, J. Wei, J. Ding, J. Zhang, C. Ma, M. Wang, L. Zhang,
 S. Zhu. ACS Appl. Nano Mater., 3 (3), 3011 (2020).
 DOI: 10.1021/acsanm.0c00296
- [52] S.A. Razek, A.B. Ayoub, M.A. Swillam. Sci. Rep., 9, 13588 (2019). DOI: 10.1038/s41598-019-49896-2
- [53] Z.-Y. Li. Adv. Opt. Mater., 6 (16), 1701097 (2018).
 DOI: 10.1002/adom.201701097
- [54] T.C. Dao, T.Q.N. Luong, T.A. Cao, M.K. Ngoc. Comm. Phys., 32 (2), 201 (2022). DOI: 10.15625/0868-3166/16113
- [55] C. Bi, Y. Song, H. Zhao, G. Liu. RSC Adv., **12** (30), 19571 (2022). DOI: 10.1039/D2RA02651A
- [56] A.M. Schwartzberg, C.D. Grant, A. Wolcott, C.E. Talley, T.R. Huser, R. Bogomolni, J.Z. Zhang. J. Phys. Chem. B, 108 (50), 19191 (2004). DOI: 10.1021/jp048430p
- [57] Y. Zharova, A. Ermina, S. Pavlov, Y. Koshtyal,
 V. Tolmachev. Phys. Status Solidi A, 216 (17), 1900318 (2019). DOI: 10.1002/pssa.201900318
- [58] V.A. Tolmachev, E.V. Gushchina, I.A. Nyapshaev, Yu.A. Zharova. Thin Solid Films, **756**, 139352 (2022). DOI: 10.1016/j.tsf.2022.139352
- [59] В.А. Толмачев, Ю.А. Жарова, А.А. Ермина,
 В.О. Большаков. Опт. и спектр., 130 (2), 243 (2022).
 DOI: 10.21883/OS.2022.02.51992.2668-21 [V.A. Tolmachev,
 Yu.A. Zharova, A.A. Ermina, V.O. Bolshakov. Opt. Spectr.,
 130 (2), 238 (2022).
 DOI: 10.21883/EOS.2022.02.53215.2668-21]
- [60] T.C. Dao, T.Q.N. Luong, T.A. Cao, M.K. Ngoc., V.L. Van. Adv. Nat. Sci: Nanosci. Nanotechnol., 7 (1), 015007 (2016). DOI: 10.1088/2043-6262/7/1/015007
- [61] V.S. Vendamani, S.V.S. Nageswara Rao, A.P. Pathak, V.R. Soma. RSC Adv., 10 (73), 44747 (2020).
 DOI: 10.1039/D0RA08834J

- [62] M.V. Mandke, S.-H. Han, H.M. Pathan. Cryst. Eng. Comm., 14 (1), 86 (2012). DOI: 10.1039/c1ce05791j
- [63] W. Ye, C. Shen, J. Tian, C. Wang, C. Hui, H. Gao. Solid State Sci., 11 (6), 1088 (2009).
 - DOI: 10.1016/j.solidstatesciences.2009.03.001
- [64] T.C. Dao, T.Q.N. Luong, Q.N. Truc. RSC Adv., 10 (67), 40940 (2020). DOI: 10.1039/d0ra08060h
- [65] T.A. Witten, L.M. Sander. Phys. Rev. Lett., 47 (19), 1400 (1981). DOI: 10.1103/PhysRevLett.47.1400
- [66] Z. Yang, W.W. Tjiu, W. Fan, T. Liu. Electrochim. Acta, 90, 400 (2013). DOI: 10.1016/j.electacta.2012.12.038
- [67] X. Qin, H. Wang, X. Wang, Z. Miao, Y. Fang,
 Q. Chen, X. Shao. Electrochim. Acta, 56 (9), 3170 (2011).
 DOI: 10.1016/j.electacta.2011.01.058
- [68] R.W.G. Wyckoff. Crystal Structures (Interscience publishers, NY, 1963)
- [69] K. Uchinokura, T. Sekine, E. Matsuura. Solid State Commun., 11 (1), 47 (1972). DOI: 10.1016/0038-1098(72)91127-1
- [70] J. Chowdhury, M. Ghosh. J. Colloid Interface Sci., 277 (1), 121 (2004). DOI: 10.1016/j.jcis.2004.04.030
- [71] Y. Wang, D. Li, P. Li, W. Wang, W. Ren, S. Dong,
 E. Wang, J. Phys. Chem. C, **111** (45), 16833 (2007).
 DOI: 10.1021/jp074519u
- [72] P. Simakova, E. Kocivsova, M. Prochazka. J. Nanomater., 2021, 4009352 (2021). DOI: 10.1155/2021/4009352
- [73] E.C. Le Ru, E.J. Blackie, M. Meyer, P.G. Etchegoin. J. Phys. Chem. C, 111 (37), 13794 (2007). DOI: 10.1021/jp0687908
- [74] P. Hildebrandt, M. Stockburger. J. Phys. Chem., 88 (24), 5935 (1984). DOI: 10.1021/j150668a038