Mechanically controlled Ku-band phase shifter
Poligina A. D. 1,2, Polenga S. V. 1, Strigova E. A.1, Ryazantsev R. O. 1
1Siberian Federal University, Krasnoyarsk, Russia
2Research and Production Enterprise «Radiosvyaz» JSC, Krasnoyarsk, Russia
Email: anastasia0711@mail.ru

PDF
The paper is devoted to the study of mechanically controlled phase shifter based on gap-waveguide with transitions to standard waveguide cross section. The paper presents the results of electrodynamic modeling of a broadband transition from a P-section gap-waveguide to a WR-75 waveguide section. The results of measuring the characteristics of the phase shifter mockup fabricated according to the results of electrodynamic modeling showed good agreement with the calculated values. The standing wave coefficient of the phase shifter was not more than 1.5 in the frequency range of 10.7-14.5 GHz. The maximum value of total loss was 0.3 dB. The phase adjustment range was slightly lower than calculated and amounted to 351o at the lower frequency of the range and 517o at the upper frequency. The considered phase shifter can be used as a part of antenna arrays with mechanoelectric scanning for operation in satellite communication networks. Keywords: gap-waveguide, phase shifter, mechanoelectric scanning.
  1. M.D. Parnes, SVCh-elektronika, No. 2, 24 (2019) (in Russian)
  2. B. Panzner, A. Joestingmeier, A. Omar, in 2008 8th Int. Symp. on antennas, propagation and EM theory (IEEE, 2008), p. 31--34. DOI: 10.1109/ISAPE.2008.4735132
  3. S. Ravishankar, in IEEE Int. Workshop on antenna technology: small antennas and novel metamaterials 2005 (IWAT 2005) (IEEE, 2005), p. 539--542. DOI: 10.1109/IWAT.2005.1461135
  4. E.A. Litinskaya, S.V. Polenga, Yu.P. Salomatov, Izv. Vyssh. Uchebn. Zaved., Radioelektron., 24 (5), 36 (2021) (in Russian). DOI: 10.32603/1993-8985-2021 -24-5-36-49
  5. T. Ravi, M. Sugadev, S. Karthikeyan, V. Vijayakumar, K. Vibhavasu, C. Ashok, in 2021 Int. Conf. on artificial intelligence and smart systems (ICAIS) (IEEE, 2021), p. 1436--1442. DOI: 10.1109/ICAIS50930.2021.9395915
  6. P.-S. Kildal, E. Alfonso, A. Valero-Nogueira, E. Rajo-Iglesias, IEEE Antennas Wireless Propag. Lett., 8, 84 (2009). DOI: 10.1109/LAWP.2008.2011147
  7. M. Lv, Z.-H. Yan, W. Liu, Y.-B. Zhong, in 2013 Int. Workshop on microwave and millimeter wave circuits and system technology (IEEE, 2013), p. 72--75. DOI: 10.1109/MMWCST.2013.6814569
  8. E. Rajo-Iglesias, M. Ebrahimpouri, O. Quevedo-Teruel, IEEE Microwave Wireless Components Lett., 28 (6), 476 (2018). DOI: 10.1109/LMWC.2018.2832013
  9. H. Abdollahy, A. Farahbakhsh, M.H. Ostovarzadeh, AEU --- Int. J. Electron. Commun., 132, 153655 (2021). DOI: 10.1016/j.aeue.2021.153655
  10. A.D. Poligina, S.V. Polenga, E.A. Strigova, Tech. Phys. Lett., 50 (2), 40 (2024)
  11. J. Liu, A.U. Zaman, P.-S. Kildal, in 2016 Global Symp. on millimeter waves (GSMM) \& ESA Workshop on millimetre-wave technology and applications (IEEE, 2016), p. 1--4. DOI: 10.1109/GSMM.2016.7500320
  12. A.U. Zaman, P.-S. Kildal, IEEE Trans. Antennas Propag., 62 (6), 2992 (2014). DOI: 10.1109/TAP.2014.2309970

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru