Subnanosecond luminescence of molecular clusters in LiF crystals implanted with silver ions
Paperny V. L. 1, Chernich A. A. 1, Ischenko A. S.2, Murzin S. V.2, Dresvyansky V. P.2
1Irkutsk State University, Irkutsk, Russia
2Irkutsk Branch of Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
Email: paperny@math.isu.runnet.ru, totoroal@mail.ru

PDF
Parameters of luminescent layers formed in samples of lithium fluoride crystals as a result of irradiation with a beam of high-energy (~ 100 keV) silver ions have been studied. Three components were detected in the luminescence spectra, two of which correspond to the emission of radiation-induced aggregate color centers of the F3+ and F2 types. The third, thermally stable component associated with the spectral maximum at the wavelength of 440 nm, corresponds to the luminescence of molecular silver clusters formed in the irradiated surface layers of lithium fluoride. In the kinetic luminescence decay curves, four components are distinguished; two slow components correspond to aggregate centers, and two intense fast components with decay times of 1.3 and 0.2 ns correspond to molecular silver clusters. Keywords: subnanosecond luminescence, molecular clusters, LiF crystals, implantation of silver ions.
  1. J.Z. Zhang, Optical properties and spectroscopy of nanomaterials (World Sci., London, 2009). DOI: 10.1142/7093
  2. A.I. Ignatiev, D.A. Klyukin, V.S. Leontieva, N.V. Nikonorov, T.A. Shakhverdov, A.I. Sidorov, Opt. Mater. Exp., 5, 1635 (2015). DOI: 10.1364/OME.5.001635
  3. Metal-polymer nanocomposites, ed. by A.L. Stepanov, L. Nicolais, G. Carotenuto (John Wiley \& Sons, London, 2004), p. 241
  4. J. Bornacelli, C. Torres-Torres, H.G. Silva-Pereyra, G.J. Labrada-Delgado, A. Crespo-Sosa, J.C. Cheang-Wong, A. Oliver, Sci. Rep., 9, 5699 (2019). DOI: 10.1038/s41598-019-42174-1
  5. O.I. Shipilova, S.P. Gorbunov, V.L. Paperny, A.A. Chernykh, V.P. Dresvyansky, E.F. Martynovich, A.L. Rakevich, Surf. Coat. Technol., 393, 125742 (2020). DOI: 10.1016/j.surfcoat.2020.125742
  6. E.F. Martynovich, V.P. Dresvyansky, N.L. Lazareva, S.V. Mikhailova, A.V. Konyashchenko, P.V. Kostryukov, B.E. Perminov, S.N. Bagayev, in Advanced photonics 2017 (Optica Publishing Group, 2017), paper NoW2C.6. DOI: 10.1364/NOMA.2017.NoW2C.6
  7. A. Anders, G.Yu. Yushkov, J. Appl. Phys., 91, 4824 (2002). DOI: 10.1063/1.1459619
  8. G. Baldacchini, E. De Nicola, R.M. Montereali, A. Scacco, V. Kalinov, J. Phys. Chem. Solids, 61, 21 (2000). DOI: 10.1016/S0022-3697(99)00236-X
  9. J.J. Velazquez, V.K. Tikhomirov, L.F. Chibotaru, N.T. Cuong, A.S. Kuznetsov, V.D. Rodi guez, M.T. Nguyen, V.V. Moshchalkov, Opt. Express, 20, 13582 (2012). DOI: 10.1364/OE.20.013582

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru