Temperature dependences of the Fe, Co, and Ni heat capacities in the presence of structural and magnetic transitions
Terekhov S.V. 1
1Donetsk Institute of Physics and Technology named after. A.A. Galkina, Donetsk, Russia
Email: svlter@yandex.ru

PDF
Analytical calculations of heat capacities of iron, cobalt and nickel in the presence of phase transitions of various natures were carried out using relations of the two-phase system model. It has been shown that the used expressions not exhibiting divergences at the absolute-zero temperature adequately describe the experimental data in the range of 0 to 2000 K. Keywords: thermodynamic model, local equilibrium region, phase transition, heat capacity, transition metal.
  1. L.A. Novitsky, I.G. Kozhevnikov, Teplofizicheskie svoystva materialov pri nizkikh temperaturakh, spravochnik (Mashinostroenie, M., 1975). (in Russian)
  2. V.E. Zinovyev, Teplofizicheskie svoystva metallov pri vysokikh temperaturakh, spravochnik (Metallurgiya, M., 1989). (in Russian)
  3. P.I. Dorogokupets, T.S. Sokolova, K.D. Litasov, Geodynamics \& Tectonophysics, 5 (4), 1033 (2014). DOI: 10.5800/GT-2014-5-4-0166
  4. P.D. Desai, J. Phys. Chem. Ref. Data, 15 (3), 967 (1986). DOI: 10.1063/1.555761
  5. A.T. Dinsdale, Calphad, 15 (4), 317 (1991). DOI: 10.1016/0364-5916(91)90030-N
  6. Q. Chen, B. Sundman, J. Phase Equil., 22 (6), 631 (2001). DOI: 10.1007/s11669-001-0027-9
  7. H. Gamsjager, J. Bugajski, R.J. Lemire, T. Gajda, W. Preis, Chemical thermodynamics of nickel, ed. by F.J. Mompean, M. Illemassene, J. Perrone (Elsevier, Amsterdam, 2005)
  8. Z. Li, H. Mao, M. Selleby, J. Phase Equilib. Diffus., 39 (5), 502 (2018). DOI: 10.1007/s11669-018-0656-x
  9. R.S. Bubnova, S.K. Filatov, Termorentgenografiya polikristallov (SPbGU, SPb, 2013), ch. II. (in Russian)
  10. I.L. Khodakovsky, Vestn. ONZ RAN, 4, NZ9001 (2012). DOI: 10.2205/2012NZ_ASEMPG (in Russian)
  11. N. Saunders, A.P. Miodownik, CALPHAD (calculation of phase diagrams): a comprehensive guide (Pergamon, Elsevier Science Ltd., 1998), vol. 1
  12. H.L. Lukas, S.G. Fries, B. Sundman, Computational thermodynamics: the Calphad method (Cambridge University Press, Cambridge, 2007)
  13. S.D. Gilev, High. Temp., 58 (2), 166 (2020). DOI: 10.1134/S0018151X20020078
  14. S.V. Terekhov, Fizika i tekhnika vysokikh davleniy, 28 (1), 54 (2018). https://www.elibrary.ru/download/ elibrary_32664811_96159951.pdf (in Russian)
  15. S.V. Terekhov, Fizika i tekhnika vysokikh davleniy, 29 (2), 24 (2019). https://www.elibrary.ru/download/elibrary _38479797_47110116.pdf (in Russian)
  16. S.V. Terekhov, Phys. Metals Metallogr., 121 (7), 664 (2020). DOI: 10.1134/S0031918X20070108
  17. S.V. Terehov, Phys. Solid State, 64 (8), 1089 (2022). DOI: 10.21883/PSS.2022.08.54631.352
  18. S.V. Terekhov, Fizika i tekhnika vysokikh davleniy, 32 (2), 36 (2022). www.donfti.ru/main/wp-content/ uploads/2022/06/3_Terehov.pdf (in Russian)
  19. B.G. Livshits, V.S. Kraposhin, Ya.L. Lipetsky, Fizicheslie svoystva metallov i splavov (Metallurgiya, M., 1980), s. 30. (in Russian)
  20. P.J. Meschter, J.W. Wright, C.R. Brooks, T.G. Kollie, J. Phys. Chem. Solids, 42 (9), 861 (1981). DOI: 10.1016/0022-3697(81)90174-8
  21. V.Yu. Bodryakov, High. Temp., 58 (2), 213 (2020). DOI: 10.1134/S0018151X20020042.
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru